Мария Морозова
До обучения в Otus на курсе дата-инженер я более 10 лет работала разработчиком различных систем, в основном специализируясь на реляционных БД, анализе данных и обеспечении качества данных.
Имея за плечами сданный экзамен по Big Data (openedu.ru), успешно законченный mlcourse, появилось осознание, что хочется расширить список инструментов для работы с данными,
а также добиться некоей "структурированности" знаний в инженерии данных, т.к. инструментов появилось довольно много, и не всегда понятно, когда и какой лучше использовать.
Посетив ознакомительный вебинар на OTUS, было принято решение поучаствовать в данном мероприятии.
На курсе есть возможность на учебных примерах запустить стримминг данных через kafka, поюзать in-memory бд, написать какой-нибудь сервис, запустить RDD на Spark, сравнить инструменты мониторинга, выбирать тип DWH, рассмотреть реальные кейсы использования инструментов, получить дельные советы от преподавателей.
В обучении на OTUS мне понравилось, что программа курса современная, преподаватели актуализируют программу, а также подстраиваются под пожелания учеников "на ходу". Например, в моем запуске было выражено пожелание, чтобы показали, как деплоить ML-модели в production "по-правильному" и это пожелание было удовлетворено.
От этого курса я получила все, что хотела: практические навыки использования современных инструментов работы с данными, понимание, когда и какие инструменты лучше применять, как деплоить, оркестрировать, мониторить, а самое главное, наверное - это как разрабатывать архитектурные решения.
Думаю, что спрос на дата-инженеров будет расти, т.к. данных становится все больше, также как и инструментов для работы с ними.