Предлагаем вашему вниманию подборку книг по машинному обучению. Они станут хорошим подспорьем для всех, кто хочет освоить эту нишу.
Предлагаем вашему вниманию подборку книг по машинному обучению. Они станут хорошим подспорьем для всех, кто хочет освоить эту нишу.
Не так давно мы рассказывали про основные алгоритмы для машинного обучения. Сегодня попробуем реализовать что-нибудь на Python 3. Начнём с линейной регрессии.
Существует нейронная сеть, помогающая писать код для нейронных сетей. Это инструмент Neural Complete, представляющий собой интерфейс автодополнения ввода. Он основан на генеративной состязательной нейросети, имеющей архитектуру долгой краткосрочной памяти.
В июне 2019 года компания Amazon выложила в открытый доступ замечательный инструмент — GluonTS, позволяющий максимально быстро и эффективно строить, оценивать и использовать модели временных рядов, основанные на глубоком обучении и вероятностном подходе.
Поиск аномалий может быть как конечной целью анализа и построения моделей, так и промежуточным этапом подготовки и очистки данных. В первом сценарии мы хотим научиться для каждого объекта выборки выносить вердикт, является ли он аномальным/нестандартным, а во втором мы находим и убираем выбросы в данных, чтобы в дальнейшем получить более устойчивые модели.
В этой статье мы поговорим об основных алгоритмах, которые используются в процессе машинного обучения. И назовём лучшие из них по мнению Джеймса Ли, автора статьи «A Tour of The Top 10 Algorithms for Machine Learning Newbies». Как говорится, встречайте «горячую десятку»!
Возможности современных нейросетей реализованы во многих программных продуктах. Именно поэтому сегодня можно найти широкий спектр Python-библиотек, ориентированных на работу с искусственными нейронными сетями. Рассмотрим основные из них.
Для начинающего Data Scientist-а очень важно понять внутреннюю структуру нейронной сети. Это руководство поможет вам создать собственную сеть с нуля, не используя для этого сложных учебных библиотек, к коим относится, например, TensorFlow.
В этой статье вы получите ряд разъяснений и рекомендаций, которые пригодятся вам при создании нейронной сети. Также будут предоставлены полезные ссылки для самостоятельного изучения.
В некоторых задачах машинного обучения объектами исследования могут быть множества — наборы объектов произвольного размера. В предыдущей заметке я рассказывал о том, как работать со множествами когда их нужно предсказывать, а в этой заметке мы поговорим о задаче поиска изображения на основе множества тегов.