Блог Machine Learning → Полезные материалы по Machine Learning | OTUS
Черная пятница уже наступила!
Все курсы ноября со скидкой 30%. Торопитесь!
Подробнее

Курсы

Курсы в разработке Подготовительные курсы
Работа в компаниях Компаниям Блог +7 499 110-61-65
Реализуем линейную регрессию на Python

ML_Deep_6.11-5020-a1e128.png

Не так давно мы рассказывали про основные алгоритмы для машинного обучения. Сегодня попробуем реализовать что-нибудь на Python 3. Начнём с линейной регрессии.

Пишем код для нейронных сетей с помощью Neural Complete

DLE_Deep_5.11-5020-7d2077.png

Существует нейронная сеть, помогающая писать код для нейронных сетей. Это инструмент Neural Complete, представляющий собой интерфейс автодополнения ввода. Он основан на генеративной состязательной нейросети, имеющей архитектуру долгой краткосрочной памяти.

Amazon GluonTS: Deep Learning для временных рядов

DLE_Deep_28.10-5020-fe61f5.png

В июне 2019 года компания Amazon выложила в открытый доступ замечательный инструмент — GluonTS, позволяющий максимально быстро и эффективно строить, оценивать и использовать модели временных рядов, основанные на глубоком обучении и вероятностном подходе.

Поиск аномалий с One-Class SVM

ML_Deep_2.8_site-5020-3c3412.png

Поиск аномалий может быть как конечной целью анализа и построения моделей, так и промежуточным этапом подготовки и очистки данных. В первом сценарии мы хотим научиться для каждого объекта выборки выносить вердикт, является ли он аномальным/нестандартным, а во втором мы находим и убираем выбросы в данных, чтобы в дальнейшем получить более устойчивые модели.

Основные алгоритмы машинного обучения

BigData_Deep_30.7_site-5020-bb390d.png

В этой статье мы поговорим об основных алгоритмах, которые используются в процессе машинного обучения. И назовём лучшие из них по мнению Джеймса Ли, автора статьи «A Tour of The Top 10 Algorithms for Machine Learning Newbies». Как говорится, встречайте «горячую десятку»!

Библиотеки Python для нейронных сетей

BigData_Deep_9.8-5020-400ab1.png

Возможности современных нейросетей реализованы во многих программных продуктах. Именно поэтому сегодня можно найти широкий спектр Python-библиотек, ориентированных на работу с искусственными нейронными сетями. Рассмотрим основные из них.

Создаём нейронную сеть на Python с нуля

ML_Deep_23.5_site-5020-5727b5.png

Для начинающего Data Scientist-а очень важно понять внутреннюю структуру нейронной сети. Это руководство поможет вам создать собственную сеть с нуля, не используя для этого сложных учебных библиотек, к коим относится, например, TensorFlow.

Изучаем нейронные сети: как создать нейросеть за 4 шага?

ML_Deep_14.5_site-5020-d1cae2.png

В этой статье вы получите ряд разъяснений и рекомендаций, которые пригодятся вам при создании нейронной сети. Также будут предоставлены полезные ссылки для самостоятельного изучения.

Глубокое обучение на множествах. Часть 2

ML_Deep_20.11_site-5020-ad4ddb.png

В некоторых задачах машинного обучения объектами исследования могут быть множества — наборы объектов произвольного размера. В предыдущей заметке я рассказывал о том, как работать со множествами когда их нужно предсказывать, а в этой заметке мы поговорим о задаче поиска изображения на основе множества тегов.

Глубокое обучение на множествах. Часть 1

ML_Deep_16.11_site-5020-26ee71.png

В некоторых задачах машинного обучения объектами исследования могут быть множества — наборы объектов произвольного размера. Давайте рассмотрим возможные подходы к работе с множествами с помощью нейронных сетей.