Реализуем линейную регрессию на Python | OTUS
🚀 OTUS Fest 2021
Бесплатная образовательная онлайн-конференция для IT-специалистов.
Подробнее

Курсы

Программирование
Backend-разработчик на PHP
-9%
Алгоритмы и структуры данных
-9%
Team Lead
-6%
Архитектура и шаблоны проектирования Разработчик IoT
-13%
C# Developer. Professional
-9%
HTML/CSS
-11%
C# ASP.NET Core разработчик
-5%
Kotlin Backend Developer
-8%
iOS Developer. Professional
-8%
Java Developer. Basic C++ Developer. Professional Web-разработчик на Python MS SQL Server Developer Android Developer. Basic Разработчик программных роботов (RPA) на базе UiPath и PIX Microservice Architecture Unity Game Developer. Basic Разработчик голосовых ассистентов и чат-ботов React.js Developer Node.js Developer Интенсив «Оптимизация в Java» Супер - интенсив по паттернам проектирования Супер - интенсив по Kubernetes JavaScript Developer. Basic Unity Game Developer. Professional Супер-интенсив Azure
Инфраструктура
Экспресс-курс «IaC Ansible»
-10%
Administrator Linux.Basic
-10%
Мониторинг и логирование: Zabbix, Prometheus, ELK
-10%
Экспресс-курс «CI/CD или Непрерывная поставка с Docker и Kubernetes»
-30%
Administrator Linux. Professional
-6%
Дизайн сетей ЦОД
-13%
NoSQL Основы Windows Server MS SQL Server Developer Инфраструктурная платформа на основе Kubernetes Cloud Solution Architecture Highload Architect Разработчик голосовых ассистентов и чат-ботов VOIP инженер Супер-практикум по работе с протоколом BGP Супер - интенсив по паттернам проектирования Супер - интенсив по Kubernetes Супер-интенсив "Tarantool"
Специализации Курсы в разработке Подготовительные курсы
+7 499 938-92-02

Реализуем линейную регрессию на Python

ML_Deep_6.11-5020-a1e128.png

Не так давно мы рассказывали про основные алгоритмы для машинного обучения. Сегодня попробуем реализовать что-нибудь на Python 3. Начнём с линейной регрессии. Перед началом работы следует импортировать нужные библиотеки:

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
%matplotlib inline

Идём дальше. На сегодняшний день линейная регрессия — не только один из самых популярных алгоритмов машинного обучения, но и один из самых недооценённых. А всё потому, что, к сожалению, многие инженеры забывают, что из 2 алгоритмов с одинаковой производительностью более разумно выбирать тот, который проще. И именно таковым является линейная регрессия — алгоритм контролируемого машинного обучения, прогнозирующий результаты, которые основаны на непрерывных функциях.

Алгоритм универсален, т. к. может запускаться как с одной входной переменной (это будет простая линейная регрессия), так и с зависимостью от нескольких (так называемая множественная регрессия). И суть регрессии заключается в том, чтобы назначить оптимальные веса для переменных с последующим созданием линии (ax + b), которая, в дальнейшем, сможет применяться для прогнозирования вывода. Если хотите углубиться в тему, смотрите видео с более подробным объяснением. Мы же перейдём от теории к реализации.

Начало работы:

from sklearn import linear_model
df = pd.read_csv('linear_regression_df.csv')
df.columns = ['X', 'Y']
df.head()

А теперь давайте посмотрим на визуализацию:

sns.set_context("notebook", font_scale=1.1)
sns.set_style("ticks")
sns.lmplot('X','Y', data=df)
plt.ylabel('Response')
plt.xlabel('Explanatory')

Что же, осталось реализовать алгоритм линейной регрессии:

linear = linear_model.LinearRegression()
trainX = np.asarray(df.X[20:len(df.X)]).reshape(-1, 1)
trainY = np.asarray(df.Y[20:len(df.Y)]).reshape(-1, 1)
testX = np.asarray(df.X[:20]).reshape(-1, 1)
testY = np.asarray(df.Y[:20]).reshape(-1, 1)
linear.fit(trainX, trainY)
linear.score(trainX, trainY)
print('Coefficient: \n', linear.coef_)
print('Intercept: \n', linear.intercept_)
print('R² Value: \n', linear.score(trainX, trainY))
predicted = linear.predict(testX)

По материалам статьи «The Hitchhiker’s Guide to Machine Learning in Python».

Не пропустите новые полезные статьи!

Спасибо за подписку!

Мы отправили вам письмо для подтверждения вашего email.
С уважением, OTUS!

Автор
0 комментариев
Для комментирования необходимо авторизоваться