Янина
Требования к позиции Data Scientist существенно выросли.
Многие работодатели требуют наличие опыта работы с Hadoop-кластером, написания кода на PySpark, использования MLflow. Код с логикой ML-пайплайнов требуется упаковывать в Docker и выкатывать, используя CI/CD-инструменты с запуском code style проверок и тестов. Ожидается, что у соискателя есть навык использования Airflow для управления ML-пайплайнами и запуска их по расписанию, навык развертывания Kubernetes - кластеров для запуска ML-пайплайнов.
Чтобы подтянуть технический уровень, мне подошел курс MLOps, содержание которого покрывает все необходимые блоки.
Домашние задания идеально выстроены вокруг одного сквозного ML-проекта. На лекции дается база, а если хочется применить более сложные решения – к уроку прилагаются полезные ссылки, чтобы можно было покопаться самому и использовать что-то интересное. Самостоятельное выполнение всех домашних заданий чрезвычайно важно, это как в плавании - недостаточно погрести руками на суше, чтобы научиться плавать в море. Итоговый проект закрепляет все полученные навыки.
В качестве шаблона для итогового проекта Павел Филонов предлагает слушателям курса production код реализованного MLOps-проекта на основе понятной любому DS базы данных Titanic. Шаблон включает в себя GitOps, Docker, манифесты Kubernetes, и т.д.
Курс сложный, бывает, что на уроке внимание не фиксируется, чувствуешь себя абсолютным болваном. Но лекции составлены таким образом, что если переслушать лекцию повторно и проделав все одновременно с преподавателем – все встает на свои места. Очень красивая лекция по Docker, Kubernetes… но для понимания красоты пришлось поработать. А после выполнения домашнего задания – полная эйфория от того как далеко удалось продвинуться.
Из преподавателей особенно хочу отметить Павла Филонова – очень талантливый преподаватель (и, конечно, специалист), обладающий навыками психотерапевта: гасит панику, делает сложные вещи понятными. Алексей Бурлаков – дает очень насыщенный материал, настолько полезный, что приходится переслушивать лекцию и конспектировать. Данила Слепов - совершенно замечательно все объясняет.