Анализ и прогнозирование временных рядов | OTUS
⚡ Подписка на курсы OTUS!
Интенсивная прокачка навыков для IT-специалистов!
Подробнее

Курсы

Программирование
Team Lead Архитектура и шаблоны проектирования Разработчик IoT C# Developer. Professional PostgreSQL Подготовка к сертификации Oracle Java Programmer (OCAJP) C# ASP.NET Core разработчик
-5%
Kotlin Backend Developer
-8%
iOS Developer. Professional
-8%
Symfony Framework Unity Game Developer. Basic JavaScript Developer. Professional Android Developer. Basic JavaScript Developer. Basic Java Developer. Professional Highload Architect Reverse-Engineering. Professional Java Developer. Basic PHP Developer. Professional Алгоритмы и структуры данных Framework Laravel Cloud Solution Architecture Vue.js разработчик Интенсив «Оптимизация в Java» Супер - интенсив по паттернам проектирования Супер - интенсив по Kubernetes Супер-интенсив "Tarantool" PHP Developer. Basic
Инфраструктура
Мониторинг и логирование: Zabbix, Prometheus, ELK Дизайн сетей ЦОД Разработчик IoT PostgreSQL Экспресс-курс "Версионирование и командная работа с помощью Git"
-30%
Экспресс-курс «Введение в непрерывную поставку на базе Docker» Базы данных Reverse-Engineering. Professional Administrator Linux. Professional Network engineer Cloud Solution Architecture Внедрение и работа в DevSecOps Супер-практикум по работе с протоколом BGP Супер - интенсив по паттернам проектирования Супер - интенсив по Kubernetes Супер-интенсив «СУБД в высоконагруженных системах» Супер-интенсив "Tarantool" Network engineer. Basic
Корпоративные курсы
Безопасность веб-приложений IT-Recruiter Дизайн сетей ЦОД Компьютерное зрение Разработчик IoT Вебинар CERTIPORT Machine Learning. Professional
-6%
NoSQL Пентест. Практика тестирования на проникновение Java QA Engineer. Базовый курс Руководитель поддержки пользователей в IT
-8%
SRE практики и инструменты Cloud Solution Architecture Внедрение и работа в DevSecOps Супер-практикум по работе с протоколом BGP Infrastructure as a code Супер-практикум по использованию и настройке GIT Промышленный ML на больших данных Экспресс-курс «CI/CD или Непрерывная поставка с Docker и Kubernetes» BPMN: Моделирование бизнес-процессов Основы Windows Server
Специализации Курсы в разработке Подготовительные курсы Подписка
+7 499 938-92-02

Анализ и прогнозирование временных рядов

DS_Deep_14.12_site-5020-829ba6.png

Анализ временных рядов — тема, достойная отдельного освещения в рамках изучения Data Science. К сожалению, ей уделено мало места в стандартных программах ВУЗов, зато она повсеместно встречается на практике. Именно поэтому на курсе «Data Scientist» в OTUS анализу временных рядов посвящена отдельная лекция, состоящая из двух академических часов.

Что такое временной ряд?

К временному ряду можно отнести любой процесс, который так или иначе выдаёт свои характеристики в развёртке времени, то есть речь идёт о данных, последовательно измеренных через некоторые промежутки.

Простой пример временного ряда — летательный объект, который посылает свои координаты на средства локации. К временным рядам относят и статистические данные о продажах, посещаемости и других процессах, рассматриваемых в определённом срезе дней/часов/минут.

Типовые задачи и способы их решения

Анализ и прогнозирование временных рядов позволяет решать задачи разной степени важности и в расширенном спектре областей. В частности, временные ряды анализируют в следующих целях: — прогнозирование продаж на ближайший год и планирование логистики магазина на основании истории объёмов продаж за предыдущий год; — прогнозирование нагрузки на серверы многопользовательской онлайн-игры на основании статистики увеличения количества посетителей; — планирование производства каких-нибудь товаров на основании спроса за предыдущие периоды; — составление годового прогноза землетрясений мощностью 7 баллов с учётом сейсмической активности за последние 50 лет и многое другое.

Основные подходы к решению задач

На текущий момент выделяют два глобальных подхода, позволяющих решать задачи, где данные представлены в виде временных рядов: 1. В классическом случае мы строим модель процесса и пытаемся математически аппроксимировать этот процесс. 2. Используя второй подход, мы не рассматриваем процесс во времени в чистом виде, а переходим к векторам признаков.

Кроме того, возможно комбинирование методов в виде ансамблей (блендинг, стекинг).

Подробнее ознакомиться с подходами к решению задач вы сможете в рамках курса «Data Scientist». Будем рады видеть вас в числе студентов!

Не пропустите новые полезные статьи!

Спасибо за подписку!

Мы отправили вам письмо для подтверждения вашего email.
С уважением, OTUS!

Автор
0 комментариев
Для комментирования необходимо авторизоваться