LogSumExp трюк | OTUS
⚡ Открываем подписку на курсы!
Проходите параллельно 3 онлайн-курса в месяц по цене одного.
Подробнее

Курсы

Программирование
Flutter Mobile Developer Подготовка к сертификации Oracle Java Programmer (OCAJP)
-8%
Супер-интенсив «СУБД в высоконагруженных системах»
-18%
Алгоритмы и структуры данных
-12%
Web-разработчик на Python
-11%
Архитектура и шаблоны проектирования
-14%
Team Lead
-15%
iOS-разработчик. Базовый курс
-23%
Разработчик на Spring Framework Python Developer. Basic
-16%
C# ASP.NET Core разработчик
-18%
Разработчик программных роботов (RPA) на базе UiPath и PIX
-6%
Android-разработчик. Базовый курс
-10%
C++ Developer. Professional Разработчик C# AWS для разработчиков Software Architect Unity Game Developer. Basic Разработчик голосовых ассистентов и чат-ботов Backend-разработка на Kotlin React.js Developer Разработчик Node.js Нереляционные базы данных Супер - интенсив по паттернам проектирования Супер - интенсив по Kubernetes Advanced Fullstack JavaScript developer
Инфраструктура
Супер-интенсив «СУБД в высоконагруженных системах»
-18%
PostgreSQL
-10%
IoT-разработчик
-12%
Administrator Linux. Professional
-11%
Базы данных
-19%
Administrator Linux.Basic
-18%
Разработчик программных роботов (RPA) на базе UiPath и PIX
-6%
Сетевой инженер AWS для разработчиков Software Architect Reverse-Engineering. Professional CI/CD VOIP инженер Супер-практикум по работе с протоколом BGP Супер - интенсив по паттернам проектирования Супер - интенсив по Kubernetes
Специализации Курсы в разработке Подготовительные курсы
+7 499 938-92-02

LogSumExp трюк

DS_Deep_8.08_site.png

Очень часто в задачах машинного обучения у нас следующая задача. Дан массив чисел: Снимок экрана 2018-08-01 в 16.11.16.pngНадо посчитать величину: Снимок экрана 2018-08-01 в 16.11.40.pngНеобходимость подсчёта такого выражения возникает например в EM-алгоритме на E-шаге, когда мы считаем апостериорное распределение на скрытые переменные. А числа Снимок экрана 2018-08-01 в 16.11.16.pngпредставляют логарифм от плотности вероятности и являются большими по модулю отрицательными значениями.

Если мы попробуем взять экспоненту большего по модулю отрицательного значения, то ввиду ограниченной точности вычислений на компьютерах мы получим ответ равный нулю. Таким образом, в нашем исходном выражении мы можем получить ноль под знаком логарифма и ошибку при вычислении или некорректный ответ.

Например:

import numpy as np

a = np.array([-1000, -2000, -2000])
print(np.log(np.sum(np.exp(a))))
>>> -inf

Существует достаточно простой и элегантный способ обойти эту проблему

Обозначим Снимок экрана 2018-08-01 в 16.14.59.pngи запишем искомое выражение:Снимок экрана 2018-08-01 в 16.15.29.pngЗаметим, что в правой части под знаком логарифма уже никак не может стоять ноль, так как по крайней мере одно слагаемое суммы равно 1, и мы можем корректно посчитать данное выражение.

Данная функция реализована, например в пакете scipy:

import numpy as np
from scipy.misc import logsumexp

a = np.array([-1000, -2000, -2000])
b = a.max()
print(b  + np.log(np.sum(np.exp(a - b)))
>>> -1000

print(logsumexp(a))
>>> -1000

Так мы рассмотрели очень простой, но эффективный способ для обхода ошибок округления, которые возникают в задачах машинного обучения.

Не пропустите новые полезные статьи!

Спасибо за подписку!

Мы отправили вам письмо для подтверждения вашего email.
С уважением, OTUS!

Автор
1 комментарий
Комментарий удален
Для комментирования необходимо авторизоваться