Блог Data Science | OTUS
🚀 OTUS Fest 2021
Бесплатная образовательная онлайн-конференция для IT-специалистов.
Подробнее

Курсы

Программирование
Backend-разработчик на PHP
-9%
Алгоритмы и структуры данных
-9%
Team Lead
-6%
Архитектура и шаблоны проектирования Разработчик IoT
-13%
C# Developer. Professional
-9%
HTML/CSS
-11%
C# ASP.NET Core разработчик
-5%
Kotlin Backend Developer
-8%
iOS Developer. Professional
-8%
Java Developer. Basic C++ Developer. Professional Web-разработчик на Python MS SQL Server Developer Android Developer. Basic Разработчик программных роботов (RPA) на базе UiPath и PIX Microservice Architecture Unity Game Developer. Basic Разработчик голосовых ассистентов и чат-ботов React.js Developer Node.js Developer Интенсив «Оптимизация в Java» Супер - интенсив по паттернам проектирования Супер - интенсив по Kubernetes JavaScript Developer. Basic Unity Game Developer. Professional Супер-интенсив Azure
Инфраструктура
Экспресс-курс «IaC Ansible»
-10%
Administrator Linux.Basic
-10%
Мониторинг и логирование: Zabbix, Prometheus, ELK
-10%
Экспресс-курс «CI/CD или Непрерывная поставка с Docker и Kubernetes»
-30%
Administrator Linux. Professional
-6%
Дизайн сетей ЦОД
-13%
NoSQL Основы Windows Server MS SQL Server Developer Инфраструктурная платформа на основе Kubernetes Cloud Solution Architecture Highload Architect Разработчик голосовых ассистентов и чат-ботов VOIP инженер Супер-практикум по работе с протоколом BGP Супер - интенсив по паттернам проектирования Супер - интенсив по Kubernetes Супер-интенсив "Tarantool"
Специализации Курсы в разработке Подготовительные курсы
+7 499 938-92-02
Посты
Математика для ИИ: операции с матрицами

Из операций с матрицами можно выделить транспонирование, псевдоинверсию, преобразование в скаляр, умножение на вектор и умножение на обратную матрицу. Знание этих операций пригодится вам в контексте понимания принципов работы ИИ.

Математика для ИИ: математическое ожидание, дисперсия и ковариация

Математическое ожидание определяется в теории вероятностей в качестве среднего значения повторения некоторого события. Можно сказать, что ожидаемое значение функции f(x) над распределением вероятностей P(x) — это среднее значение f в случае, если x берётся из P.

Математика для ИИ: базовые термины линейной алгебры

Данная статья даст вам представление о базовых концепциях линейной алгебры — необходимых основах для всех, кто профессионально интересуется машинным обучением, искусственным интеллектом и нейронными сетями. Помните, что многие концепции, используемые в вышеописанных областях, основаны на математических принципах и были открыты более 50 лет назад.

Математика для ИИ: случайные величины и распределение вероятностей

Случайная величина — величина, случайно принимающая какое-либо значение из множества всевозможных значений. Также можно сказать, что это функция, конвертирующая результат какого-нибудь меняющегося процесса в числовое значение. Вот, как это обозначается в математике:

Математика для ИИ: базовые термины теории вероятностей

Когда речь идёт об ИИ, хаотичность и неопределённость проявляются во многих формах. И теория вероятностей предоставляет нам методы для работы с неопределённостью, а также используется для анализа частоты возникновения событий.

Зачем знать математику в Data Science?

Практические навыки в математике являются одним из основных требований к Middle-специалистам по Data Science. А если вы «джуниор», то умение применять математические знания на практике позволят вам быстрее продвинуться по карьерной лестнице в этойнепростой сфере.

Метод R/R

Совместив вместе метод Херста и метод виртуальных объемов, вы сможете исследовать свойства особых фрактальных (R/R) функций, представляющих собой зависимости квадрата отношения размаха накопленного отклонения от среднего к размаху отклонения от среднего от времени наблюдения (объема выборки) N.

Нелинейность в анализе временных рядов

Math_DS_Deep_28.4-5020-09d3f1.png

Структура современных временных рядов претерпела сильные изменения как в природе своего процесса, так и в характеристиках своего поведения. Современные временные ряды обладают рядом свойств, которые делают невозможным применение традиционных методов анализа.

Процессы с длинной памятью

Math_DS_26.12-5020-001233.png

Зависимость структуры ряда от времени играет ключевую роль при моделировании или анализе временных рядов с различным типом процесса. В задаче анализа временного ряда со сложной структурой часто применяются модели класса ARIMA(p,d,q), которые моделируют различные ситуации, встречающиеся при анализе стационарных и нестационарных рядов.