Математика для ИИ: нормы | OTUS
🔥 Начинаем BLACK FRIDAY!
Максимальная скидка -25% на всё. Успейте начать обучение по самой выгодной цене.
Выбрать курс

Курсы

Программирование
iOS Developer. Basic
-25%
Python Developer. Professional
-25%
Разработчик на Spring Framework
-25%
Golang Developer. Professional
-25%
Python Developer. Basic
-25%
iOS Developer. Professional
-25%
Node.js Developer
-25%
Unity Game Developer. Professional
-25%
React.js Developer
-25%
Android Developer. Professional
-25%
Software Architect
-25%
C++ Developer. Professional
-25%
Программист С Разработчик C# Базы данных MS SQL Server Developer AWS для разработчиков Cloud Solution Architecture Разработчик голосовых ассистентов и чат-ботов Архитектура и шаблоны проектирования Agile Project Manager Нереляционные базы данных Супер - интенсив по паттернам проектирования Супер-практикум по использованию и настройке GIT IoT-разработчик Подготовка к сертификации Oracle Java Programmer (OCAJP) Супер-интенсив «СУБД в высоконагруженных системах» Супер-интенсив "Azure для разработчиков"
Инфраструктура
Мониторинг и логирование: Zabbix, Prometheus, ELK
-25%
DevOps практики и инструменты
-25%
Архитектор сетей
-25%
Инфраструктурная платформа на основе Kubernetes
-25%
Супер-интенсив «ELK»
-16%
Супер-интенсив «IaC Ansible»
-16%
Administrator Linux. Professional MS SQL Server Developer Безопасность Linux PostgreSQL Reverse-Engineering. Professional CI/CD VOIP инженер Супер-практикум по работе с протоколом BGP Супер - интенсив по паттернам проектирования Супер - интенсив по Kubernetes Administrator Linux.Basic Супер-интенсив "Tarantool"
Специализации Курсы в разработке Подготовительные курсы
+7 499 938-92-02

Математика для ИИ: нормы

В некоторых случаях при работе с вектором необходимо знать размер вектора. В таких ситуациях помогают специальные функции, называемые нормами — Ln.

Что означает маленькая буква n? Это число измерений, в которых находится вектор. С учётом того, сколько конкретно измерений существует в вашем векторном пространстве, будут различаться и нормы. Самая известная норма — норма 2-мерного пространства (её ещё называют Евклидовой). Очень часто она представляет собой Евклидово расстояние от начала вектора до точки в пространстве, которая находится на конце данного вектора. В случае обобщения пространства на несколько измерений применяют глобальную норму:

image_20_2-1801-867771.png

В принципе, нормой может быть, по сути, любая функция, которая удовлетворяет ряду требований:

Screenshot_2-1801-eb3f48.png

Нередко, когда разработчик создаёт ИИ-приложение, важным является различить элементы, которые равны 0, и элементы, значение которых близко к 0, но нулём не является. В этих случаях применяют норму L1. Это простая норма, которая растёт с одинаковой скоростью в любых точках векторного пространства. Когда любой элемент вектора x передвигается от 0 к a, то функция ниже вырастает на a:

image_23_2-1801-ddee33.png

Как известно, в глубоком обучении параметры нейросетей абстрагируются как матрицы. В результате нам необходимо знать размер матрицы, а здесь очень поможет норма Фробениуса:

image_24_280x124_1-1801-631901.png

Источник — «Mathematics for Artificial Intelligence – Linear Algebra»

Не пропустите новые полезные статьи!

Спасибо за подписку!

Мы отправили вам письмо для подтверждения вашего email.
С уважением, OTUS!

Автор
0 комментариев
Для комментирования необходимо авторизоваться
🎁 Максимальная скидка!
Черная пятница уже в OTUS! Скидка -25% на всё!