Математика для ИИ: базовые термины линейной алгебры | OTUS
⚡ Открываем подписку на курсы!
Проходите параллельно 3 онлайн-курса в месяц по цене одного.
Подробнее

Курсы

Программирование
Flutter Mobile Developer Подготовка к сертификации Oracle Java Programmer (OCAJP)
-8%
Алгоритмы и структуры данных
-12%
Web-разработчик на Python
-11%
Архитектура и шаблоны проектирования
-14%
JavaScript Developer. Basic Супер-интенсив «СУБД в высоконагруженных системах»
-18%
iOS-разработчик. Базовый курс
-23%
Разработчик на Spring Framework
-23%
Python Developer. Basic
-16%
C# ASP.NET Core разработчик
-18%
Разработчик программных роботов (RPA) на базе UiPath и PIX
-6%
Android Developer. Basic
-10%
C++ Developer. Professional Разработчик C# AWS для разработчиков Software Architect Unity Game Developer. Basic Разработчик голосовых ассистентов и чат-ботов Backend-разработка на Kotlin React.js Developer Разработчик Node.js Нереляционные базы данных Супер - интенсив по паттернам проектирования Супер - интенсив по Kubernetes Advanced Fullstack JavaScript developer
Инфраструктура
PostgreSQL
-10%
IoT-разработчик
-12%
Administrator Linux. Professional
-11%
Базы данных
-19%
Administrator Linux.Basic
-18%
Супер-интенсив «СУБД в высоконагруженных системах»
-18%
Разработчик программных роботов (RPA) на базе UiPath и PIX
-6%
Сетевой инженер AWS для разработчиков Software Architect Reverse-Engineering. Professional CI/CD VOIP инженер Супер-практикум по работе с протоколом BGP Супер - интенсив по паттернам проектирования Супер - интенсив по Kubernetes
Специализации Курсы в разработке Подготовительные курсы
+7 499 938-92-02

Математика для ИИ: базовые термины линейной алгебры

Данная статья даст вам представление о базовых концепциях линейной алгебры — необходимых основах для всех, кто профессионально интересуется машинным обучением, искусственным интеллектом и нейронными сетями. Помните, что многие концепции, используемые в вышеописанных областях, основаны на математических принципах и были открыты более 50 лет назад.

По большему счёту, вся линейная алгебра строится вокруг нескольких понятий — это скаляры, векторы, матрицы и тензоры. Эти понятия очень важны для Machine Learning, ведь с их помощью можно абстрагировать модели и данные. При этом каждую запись в каком-либо наборе данных можно представить в виде вектора в многомерном пространстве, а параметры нейросетей абстрагируются, как матрицы. Так как каждое из понятий специфично по своему, рассмотрим их более подробно.

Скаляр

Скаляр, в отличие от матрицы или вектора, является всего лишь числом. Скаляры определяются как элементы поля и предназначены для описания векторного пространства, а несколько скаляров формируют вектор. Скаляры бывают представлены различными типами чисел: действительными, вещественными, натуральными. Обозначаются они прописными и строчными буквами греческого и латинского алфавитов:

image_7_1-20219-4dd69e.png

Вектор

Вектор представляет собой упорядоченный массив скаляров, причём скаляры выступают тут в виде координат точек в пространстве. Скопление векторов образует векторное пространство. Векторы можно складывать, перемножать, масштабировать. Обозначаются векторы жирным шрифтом, при этом у каждого элемента есть индекс.

image_8_1-20219-b51569.png

Матрица

Матрица — 2-мерный массив скаляров. Матрица обозначается в верхнем регистре жирным шрифтом. Допустим, матрица из вещественных чисел, с m рядов и n столбцов будет записана так:

image_10_1-20219-3da3eb.png Так как матрица — это 2-мерный массив, её элементы имеют 2 индекса:

image_11_1-20219-d12ca6.png Две матрицы можно складывать и вычитать друг с другом, но только в том случае, когда у них одинаковое число столбцов и рядов. Что касается умножения, то 2 матрицы можно перемножать, если число столбцов 1-й матрицы соответствует числу рядов 2-й. К примеру, можно перемножить матрицу A размера m, n с матрицей B размера n, p. В итоге получим матрицу C размера m, p. Вот, как будет выглядеть формула умножения:

image_12_1-20219-74b246.png Также стоит добавить, что матричное произведение ассоциативно и дистрибутивно:

image_13_1-20219-3170ae.png Но в некоторых случаях нам надо перемножать элементы матриц между собой. Речь идёт об операции под названием произведение Адамара (обозначают A ∘ B). Кроме того, матрицы можно умножать на скаляры и векторы. Интересный факт: произведением вектора и матрицы будет вектор:

image_14_1-20219-7bef20.png

Тензор

Тензор представляет собой многомерный массив чисел. Как правило, в тензоре более 2-х измерений, поэтому его можно изобразить, как многомерную сетку, состоящую из чисел. Но по большему счёту, матрицы — это те же тензоры, но они 2-мерные, вот и все отличия. Что касается тензоров, то они получили известность в том числе и благодаря ML-фреймворку TensorFlow.

В следующей части этой статьи мы продолжим разговор о линейной алгебре в контексте ИИ. Следите за новостями блога!

Источник — «Mathematics for Artificial Intelligence – Linear Algebra»

Не пропустите новые полезные статьи!

Спасибо за подписку!

Мы отправили вам письмо для подтверждения вашего email.
С уважением, OTUS!

Автор
0 комментариев
Для комментирования необходимо авторизоваться