Математика для ИИ: математическое ожидание, дисперсия и ковариация | OTUS
⚡ Подписка на курсы OTUS!
Интенсивная прокачка навыков для IT-специалистов!
Подробнее

Курсы

Программирование
Алгоритмы и структуры данных Team Lead Архитектура и шаблоны проектирования Разработчик IoT C# Developer. Professional PostgreSQL Разработчик на Spring Framework
-5%
Flutter Mobile Developer NoSQL iOS Developer. Basic
-10%
C++ Developer. Basic C++ Developer. Professional Android Developer. Professional Microservice Architecture Unity Game Developer. Professional Базы данных Node.js Developer React.js Developer Специализация Java-разработчик
-25%
Web-разработчик на Python Framework Laravel Cloud Solution Architecture Vue.js разработчик Интенсив «Оптимизация в Java» Супер - интенсив по паттернам проектирования Супер - интенсив по Kubernetes Супер-интенсив "Tarantool" PHP Developer. Basic
Инфраструктура
Мониторинг и логирование: Zabbix, Prometheus, ELK Administrator Linux. Professional Дизайн сетей ЦОД Разработчик IoT PostgreSQL Экспресс-курс "Версионирование и командная работа с помощью Git"
-30%
Microservice Architecture Highload Architect Специализация Administrator Linux
-25%
Network engineer Cloud Solution Architecture Внедрение и работа в DevSecOps Супер-практикум по работе с протоколом BGP Супер - интенсив по паттернам проектирования Супер - интенсив по Kubernetes Супер-интенсив «СУБД в высоконагруженных системах» Супер-интенсив "Tarantool" Network engineer. Basic
Корпоративные курсы
Безопасность веб-приложений IT-Recruiter Дизайн сетей ЦОД Компьютерное зрение Разработчик IoT Вебинар CERTIPORT Machine Learning. Professional
-6%
NoSQL Пентест. Практика тестирования на проникновение Java QA Engineer. Базовый курс Руководитель поддержки пользователей в IT
-8%
SRE практики и инструменты Cloud Solution Architecture Внедрение и работа в DevSecOps Супер-практикум по работе с протоколом BGP Infrastructure as a code Супер-практикум по использованию и настройке GIT Промышленный ML на больших данных Экспресс-курс «CI/CD или Непрерывная поставка с Docker и Kubernetes» BPMN: Моделирование бизнес-процессов Основы Windows Server
Специализации Курсы в разработке Подготовительные курсы Подписка
+7 499 938-92-02

Математика для ИИ: математическое ожидание, дисперсия и ковариация

Математическое ожидание определяется в теории вероятностей в качестве среднего значения повторения некоторого события. Можно сказать, что ожидаемое значение функции f(x) над распределением вероятностей P(x) — это среднее значение f в случае, если x берётся из P.

Математическое ожидание определяется для дискретных случайных величин следующим образом:

image_13_1_1-20219-2d1288.png

Если же речь идёт о непрерывных случайных величинах, то формула выглядит иначе:

image_14_1_1-20219-fe09b5.png

В каком-то смысле, это значение можно назвать мерой так называемого «центра» по распределению вероятностей. Но интересно узнать и то, каким образом изменятся значения функции f(x) случайной величины x, если мы возьмём различные значения из её распределения вероятностей P(x). Это не что иное, как дисперсия, представляющая собой среднеквадратичное отклонение значений f(x) от среднего значения f(x):

image_15_1-20219-c1f25f.png

Если же говорить о корне этого выражения, то его называют стандартным отклонением. Следовательно, мы можем определить ковариацию — меру линейной зависимости 2-х случайных величин. Ковариация показывает, насколько сильно линейно связаны 2 числа:

image_16_1_1-20219-fe29bf.png

Источник: «Mathematics for Artificial Intelligence – Probability».

Не пропустите новые полезные статьи!

Спасибо за подписку!

Мы отправили вам письмо для подтверждения вашего email.
С уважением, OTUS!

Автор
0 комментариев
Для комментирования необходимо авторизоваться