Рекомендательная система стремится наиболее точно предсказать предпочтения потребителя, предложив самый подходящий ему товар/услугу. Давайте рассмотрим особенности и основные виды таких систем.
Рекомендательная система стремится наиболее точно предсказать предпочтения потребителя, предложив самый подходящий ему товар/услугу. Давайте рассмотрим особенности и основные виды таких систем.
Если вы проходите собеседование на ML-специалиста, у вас могут спросить, какие именно гиперпараметры вы бы настраивали в целях борьбы с переобучением у градиентного бустинга. Что ж, давайте попробуем ответить на этот вопрос.
Как известно, алгоритм машинного обучения "Случайный лес" (Random forest) основывается на принципе бэггинга, то есть на усреднении предсказания нескольких независимых моделей. Но что, если у нас только одна обучающая выборка? Каким образом в данном случае мы получим независимые модели? И почему на практике это не приводит к проблемам?
Во время собеседования у начинающего ML-специалиста могут спросить, чем именно отличается метрика от функции потерь? Давайте разберемся.
В этом материале мы рассмотрим одну из интересных научных статей с конференции RecSys 2021. Статья называется "Large-Scale Modeling of Mobile User Click Behaviors Using Deep Learning", первоисточник -- здесь.
Одним из наиболее распространенных методов распознавания объектов в компьютерном зрении является Template matching (поиск по соответствию шаблонам изображений). Этот метод позволяет найти, существует ли на изображении заданный объект и если да, то где именно. Метод используется для распознавания транспортных средств, решения производственных задач, прокладки маршрутов для мобильных робототехнических устройств, а также в медицинских целях.
Технологии big data сегодня упрощают хранение и анализ огромного массива данных в банкинге, сокращая при этом издержки на оборудование. При этом важно постоянно модернизировать системы, чтобы поддерживать их производительность на должном уровне. Это непросто.
В этой заметке поговорим о том, что такое ансамбли моделей в Machine learning. Заодно рассмотрим основные стратегии построения ансамблей.
Data Fusion представляет собой совмещение данных от разных источников с изображениями, полученными с камер Computer Vision. Цель этого совмещения -- получить более точную и максимально полезную информацию. Но так ли это необходимо?
Понятие искусственного интеллекта (ИИ) сейчас на слуху, причем интерес к этой теме не падает уже несколько лет. Давайте же разберемся, какова разница между следующими терминами: