Проект выпускника курса «Machine Learning» | OTUS
🚀 OTUS Fest 2021
Бесплатная образовательная онлайн-конференция для IT-специалистов.
Подробнее

Курсы

Программирование
Backend-разработчик на PHP
-9%
Алгоритмы и структуры данных
-9%
Team Lead
-6%
Архитектура и шаблоны проектирования Разработчик IoT
-13%
C# Developer. Professional
-9%
HTML/CSS
-11%
C# ASP.NET Core разработчик
-5%
Kotlin Backend Developer
-8%
iOS Developer. Professional
-8%
Java Developer. Basic C++ Developer. Professional Web-разработчик на Python MS SQL Server Developer Android Developer. Basic Разработчик программных роботов (RPA) на базе UiPath и PIX Microservice Architecture Unity Game Developer. Basic Разработчик голосовых ассистентов и чат-ботов React.js Developer Node.js Developer Интенсив «Оптимизация в Java» Супер - интенсив по паттернам проектирования Супер - интенсив по Kubernetes JavaScript Developer. Basic Unity Game Developer. Professional Супер-интенсив Azure
Инфраструктура
Экспресс-курс «IaC Ansible»
-10%
Administrator Linux.Basic
-10%
Мониторинг и логирование: Zabbix, Prometheus, ELK
-10%
Экспресс-курс «CI/CD или Непрерывная поставка с Docker и Kubernetes»
-30%
Administrator Linux. Professional
-6%
Дизайн сетей ЦОД
-13%
NoSQL Основы Windows Server MS SQL Server Developer Инфраструктурная платформа на основе Kubernetes Cloud Solution Architecture Highload Architect Разработчик голосовых ассистентов и чат-ботов VOIP инженер Супер-практикум по работе с протоколом BGP Супер - интенсив по паттернам проектирования Супер - интенсив по Kubernetes Супер-интенсив "Tarantool"
Специализации Курсы в разработке Подготовительные курсы
+7 499 938-92-02

Проект выпускника курса «Machine Learning»

ML_Deep_6.11_site-5020-8bde6d.png

Не секрет, что PyTorch содержит множество различных классов для оптимизаторов, хотя некоторые из них очень похожи. Кирилл Романов, выпускник курса Machine Learning, создал проект «Универсальный оптимизатор для PyTorch».

С помощью такого оптимизатора появляется возможность конструировать большинство существующих оптимизаторов, включая: — SGD; — Rmsprop; — Adadelta; — Adam-подобные оптимизаторы.

Также можно комбинировать входные параметры и создавать нестандартный оптимизатор. В рамках реализации проекта выпускник рассмотрел принципы работы основных оптимизаторов спуска градиента, подготовил алгоритмы настройки пользовательского и стандартного оптимизатора, выполнил тестирование и показал лучшую эффективность нового алгоритма оптимизации по сравнению со стандартными.

Алгоритм настройки пользовательского оптимизатора

machine_learning-20219-b4170b.jpg Готовый проект был защищён студентом и рекомендован преподавателем к показу потенциальным работодателям в качестве образца, подтверждающего профессиональные навыки.

Для ознакомления с подробностями проекта перейдите по ссылке на соответствующий репозиторий.

Ждём ваше мнение о проектной работе в комментариях!

Не пропустите новые полезные статьи!

Спасибо за подписку!

Мы отправили вам письмо для подтверждения вашего email.
С уважением, OTUS!

Автор
0 комментариев
Для комментирования необходимо авторизоваться