Проект выпускника курса «Machine Learning» | OTUS
⚡ Открываем подписку на курсы!
Проходите параллельно 3 онлайн-курса в месяц по цене одного.
Подробнее

Курсы

Программирование
Разработчик Python. Базовый курс Symfony Framework Разработчик Python. Продвинутый курс
-22%
Разработчик на Spring Framework
-20%
iOS Разработчик. Продвинутый курс
-21%
Разработчик Golang
-25%
Разработчик Java
-17%
Мобильная разработка на Flutter
-15%
Android-разработчик. Продвинутый курс
-16%
React.js разработчик
-12%
Разработчик C++
-12%
Архитектор высоких нагрузок
-10%
Нереляционные базы данных
-17%
PostgreSQL Framework Laravel Android-разработчик. Базовый курс Web-разработчик на Python AWS для разработчиков Cloud Solution Architecture Разработчик голосовых ассистентов и чат-ботов Архитектура и шаблоны проектирования Разработчик Node.js Scala-разработчик Advanced Fullstack JavaScript developer
Специализации Курсы в разработке Подготовительные курсы
+7 499 938-92-02

Проект выпускника курса «Machine Learning»

ML_Deep_6.11_site-5020-8bde6d.png

Не секрет, что PyTorch содержит множество различных классов для оптимизаторов, хотя некоторые из них очень похожи. Кирилл Романов, выпускник курса Machine Learning, создал проект «Универсальный оптимизатор для PyTorch».

С помощью такого оптимизатора появляется возможность конструировать большинство существующих оптимизаторов, включая: — SGD; — Rmsprop; — Adadelta; — Adam-подобные оптимизаторы.

Также можно комбинировать входные параметры и создавать нестандартный оптимизатор. В рамках реализации проекта выпускник рассмотрел принципы работы основных оптимизаторов спуска градиента, подготовил алгоритмы настройки пользовательского и стандартного оптимизатора, выполнил тестирование и показал лучшую эффективность нового алгоритма оптимизации по сравнению со стандартными.

Алгоритм настройки пользовательского оптимизатора

machine_learning-20219-b4170b.jpg Готовый проект был защищён студентом и рекомендован преподавателем к показу потенциальным работодателям в качестве образца, подтверждающего профессиональные навыки.

Для ознакомления с подробностями проекта перейдите по ссылке на соответствующий репозиторий.

Ждём ваше мнение о проектной работе в комментариях!

Не пропустите новые полезные статьи!

Спасибо за подписку!

Мы отправили вам письмо для подтверждения вашего email.
С уважением, OTUS!

Автор
0 комментариев
Для комментирования необходимо авторизоваться