Как реализовать логистическую регрессию на Python? | OTUS

Как реализовать логистическую регрессию на Python?

ML_Deep_29.04-5020-656ade.png

Логистическая регрессия представляет собой алгоритм контролируемой классификации. С её помощью вы сможете предсказывать значения непрерывной зависимой переменной в интервале от 0 до 1. Некоторые основные аспекты логистической регрессии находятся в основе важных алгоритмов машинного обучения, позволяющих, к примеру, повышать точность прогноза нейросетевой модели. Для лучшего понимания данного нюанса посмотрите вот это видео.

Мы же попробуем реализовать алгоритм логистической регрессии, используя язык программирования Python:

Начало работы:

from sklearn.linear_model import LogisticRegression
df = pd.read_csv('logistic regression df.csv')
df.columns = ['X', 'Y']
df.head()

А теперь давайте посмотрим на визуализацию:

sns.set_context("notebook", font_scale=1.1)
sns.set_style("ticks")
sns.regplot('X','Y', data=df, logistic=True)
plt.ylabel('Probability')
plt.xlabel('Explanatory')

Что же, осталось реализовать, собственно, сам алгоритм:

logistic = LogisticRegression()
X = (np.asarray(df.X)).reshape(-1, 1)
Y = (np.asarray(df.Y)).ravel()
logistic.fit(X, Y)
logistic.score(X, Y)
print('Coefficient: \n', logistic.coef_)
print('Intercept: \n', logistic.intercept_)
print('R² Value: \n', logistic.score(X, Y))

Также, возможно, вам будет интересно: — «Реализуем линейную регрессию на Python»; — «Основные алгоритмы машинного обучения».

По материалам «The Hitchhiker’s Guide to Machine Learning in Python».

Не пропустите новые полезные статьи!

Спасибо за подписку!

Мы отправили вам письмо для подтверждения вашего email.
С уважением, OTUS!

Автор
0 комментариев
Для комментирования необходимо авторизоваться
Популярное
Сегодня тут пусто