Передача сообщений по нейросети

ML_Deep_20.06_1_Site.png

В предыдущем посте я рассказал о том, как делать свёртки на графах. Одним из ключевых моментов было понятие сообщения, которое задавалось как: Снимок экрана 2018-06-20 в 13.11.38.pngИз-за того, что внутри вектора сообщения происходит независимое суммирование состояний соседних вершин и состояний рёбер, итоговая модель не может учитывать корреляции между вершинами и её рёбрами. Фактически нам бы хотелось, чтобы каждая соседняя вершина независимо от других передавала своё сообщение на очередном шаге.

Свёрточные сети на графах

ML_Deep_19.06_SITE.png

Давайте рассмотрим свёрточные сети, но не обычные свёртки, а скорее их аналог для работы с графовыми данными. Граф — это сложный и непонятный для привычных нам нейронных сетей объект. Самый простой способ представить граф для работы с ним — записать его в виде матрицы смежности, в которой каждой вершине соответствует своя строка и свой столбец. В простейшем виде, такая матрица будет содержать только рёбра — единицы в клетках пересечения строк и столбцов, соответствующих связанным вершинам.

Функции потерь Дискриминатора: стабилизация обучения

ML_Deep_14.06_SITE.png

В первом посте я в общих чертах рассказал о том, что такое генеративные состязательные сети. Идея заставить соревноваться две нейронные сети выглядит очень просто и красиво, однако при реализации для конкретных задач обязательно возникают трудности. В этот раз я расскажу о том, как немножко изменить функции потерь так, чтобы стабилизировать процесс обучения.

Несколько слов про генеративные состязательные сети

MLDeep_29_05_Site.png

На самом пике волне хайпа искусственного интеллекта уверенно держатся генеративные состязательные сети. Не все знают, но генеративные модели появились ещё в 18-ом веке, когда преподобный Томас Байес сформулировал своё знаменитое правило связавшее «приорное» и «постериорное» распределения.