Зачем Big Data нужен Kubernetes? | OTUS
⚡ Подписка на курсы OTUS!
Интенсивная прокачка навыков для IT-специалистов!
Подробнее

Курсы

Программирование
C++ Developer. Professional
-5%
Scala-разработчик
-8%
Backend-разработчик на PHP
-9%
Алгоритмы и структуры данных
-9%
Team Lead
-6%
Архитектура и шаблоны проектирования Golang Developer. Professional
-5%
HTML/CSS
-11%
C# ASP.NET Core разработчик
-5%
Kotlin Backend Developer
-8%
iOS Developer. Professional
-8%
Java Developer. Professional Web-разработчик на Python MS SQL Server Developer Android Developer. Basic Разработчик программных роботов (RPA) на базе UiPath и PIX Microservice Architecture Unity Game Developer. Basic Разработчик голосовых ассистентов и чат-ботов React.js Developer Node.js Developer Интенсив «Оптимизация в Java» Супер-практикум по использованию и настройке GIT Symfony Framework Java Developer. Basic Unity Game Developer. Professional Супер-интенсив Azure
Инфраструктура
Инфраструктурная платформа на основе Kubernetes
-6%
Экспресс-курс «IaC Ansible»
-10%
Administrator Linux.Basic
-10%
Мониторинг и логирование: Zabbix, Prometheus, ELK
-10%
Экспресс-курс «CI/CD или Непрерывная поставка с Docker и Kubernetes»
-30%
Administrator Linux. Professional
-6%
Экcпресс-курс «ELK»
-10%
Экспресс-курс по управлению миграциями (DBVC)
-10%
Базы данных Network engineer Cloud Solution Architecture Highload Architect Разработчик голосовых ассистентов и чат-ботов VOIP инженер Супер-практикум по работе с протоколом BGP Супер - интенсив по паттернам проектирования Супер - интенсив по Kubernetes Супер-интенсив "Tarantool"
Специализации Курсы в разработке Подготовительные курсы
+7 499 938-92-02

Зачем Big Data нужен Kubernetes?

Контейнеризация обеспечивает нам непрерывную интеграцию и поставку ПО (CI/CD), что соответствует современному подходу DevOps. И правда, упаковав в контейнер программное окружение, мы сможем быстро развернуть микросервис на рабочем сервере, безопасно взаимодействуя с прочими приложениями. И многим хорошо знаком Docker Compose, позволяющий описывать и запускать многоконтейнерные приложения. Но если нам нужно обеспечить действительно сложный порядок запуска огромного количества таких контейнеров (допустим, нескольких тысяч, как это нередко бывает в Big Data-системах), то не обойтись без эффективного средства управления ими – инструмента оркестрации. Как раз в этом и заключается основное назначение Kubernetes.

Причём Kubernetes — это не просто фреймворк для оркестрации контейнеров, а полноценная платформа управления контейнерами, позволяющая параллельно запускать множество задач, которые распределены по тысячам приложений (микросервисов) и расположены на разных кластерах (клиентских серверах, публичном облаке, собственном дата-центре и т. п.).

Контейнер в Kubernetes – это программный компонент самого низкого уровня абстракции, а для межпроцессного взаимодействия несколько контейнеров инкапсулируются в поды. И задача Kubernetes — динамически распределять ресурсы узла между подами, для чего на каждом узле посредством встроенного агента внутреннего мониторинга Kubernetes cAdvisor осуществляется непрерывный сбор данных об использовании ресурсов и производительности.

Что имеет особое значение для проектов Big Data, так это Kubelet – компонент Kubernetes, который работает на узлах, автоматически обеспечивая запуск, остановку и управление контейнерами, организованными в поды. В случае нахождения проблемы с каким-либо подом, Kubelet попытается повторно развернуть его и выполнить перезапуск.

Как и в случае с HDFS (популярная файловая система для решений Big Data), в Kubernetes-кластере любой узел регулярно посылает на master heartbeat message — сообщения диагностического характера. И если мастер обнаруживает сбой на каком-нибудь узле, Replication Controller старается перезапустить нужные поды на другом узле, который работает корректно.

Принципы работы Kubernetes:

k8s_4_1-20219-6faf15.png

Примеры использования Kubernetes

Как уже было сказано выше, K8s предназначается для управления множеством контейнеризированных микросервисов. Именно поэтому нет ничего удивительного в том, что такая технология приносит максимальную выгоду как раз в Big Data-проектах.

К примеру, Kubernetes используют: — сервис знакомств Tinder; — компания Huawei; — сервис поиска автомобильных попутчиков BlaBlaCar; — евроцентр ядерных исследований (CERN) и множество других компаний, которые работают с большими данными и нуждаются в современных инструментах для отказоустойчивого и быстрого развёртывания приложений.

Остаётся добавить, что из-за цифровизации предприятий и распространения DevOps-подхода, спрос на навыки владения Kubernetes также растёт и в отечественных компаниях. Вывод прост — Kubernetes сегодня — это must have для современного DevOps-инженера и разработчика Big Data.

Не пропустите новые полезные статьи!

Спасибо за подписку!

Мы отправили вам письмо для подтверждения вашего email.
С уважением, OTUS!

Автор
0 комментариев
Для комментирования необходимо авторизоваться