Лучшие Open Source проекты по машинному обучению. Часть 2 | OTUS
Скидка до 15% на курсы ноября, декабря и января
❄️ До 20.12 Забрать скидку! →
Выбрать курс

Лучшие Open Source проекты по машинному обучению. Часть 2

DS_Deep_15.3_site-5020-02e98e.png

В предыдущей заметке мы ознакомились с первой десяткой наиболее популярных опенсорсных проектов. Продолжаем наш «хит-парад».

Deep universal probabilistic programming

Библиотека от Uber AI Labs. Создавалась для вероятностного программирования в целях оптимизации работы такси-сервиса. Позволяет подбирать водителей и пассажиров, вычислять рациональные маршруты, искать выгодные варианты для совместных поездок.

11ds-20219-b3b4d9.png

Deep Exemplar-Based Colorization

Служит для раскрашивания чёрно-белых картинок. Используется свёрточная нейросеть, получающая цветное референсное изображение и применяющая его цветовую гамму по отношению к чёрно-белому рисунку или фото.

12ds-20219-9459db.png

Facets

Не что иное, как инструмент визуализации датасетов Machine Learning. Сами визуализации имеют вид веб-компонентов Polymer на Typescript. Facets позволяет обнаруживать выбросы и сравнивать распределения по разным датасетам. Такие важные показатели, как высокий процент потерянных данных, выделяются красным.

13ds-20219-915670.png

ELF with AlphaGoZero

Комплексное решение, предназначенное для исследования игр с реимплементацией AlphaZero и AlphaGo Zero. Платформа включает в себя интуитивные API, совместное моделирование, мини-среды для стратегических видеоигр в реальном времени и многое другое.

14ds-20219-5481a1.png

Detectron

Программная система Facebook AI Research. Применяет продвинутые алгоритмы для распознавания объектов (например, нейросеть Mask R-CNN). Создана на Python на основе фреймворка Caffe2.

15ds-20219-8edafb.png

Fast Style Transfer

Пожалуй, одна из лучших свёрточных нейросетей. Позволяет переносить стиль с одних изображений на другие, делая это относительно быстро. Реализована в TensorFlow.

16ds-20219-9fdf77.png

Face recognition

Инструмент для распознавания лиц. Выделяет черты лиц на фото и пытается идентифицировать человека. Для работы используется передовая технология распознавания лиц dlib. Отличается высокой точностью — около 99 %.

17ds-20219-5f3434.png

Deep photo style transfer

Очередной проект по переносу стилей. Характеризуется простым интерфейсом, позволяющим быстро объединить стиль и исходное изображение.

18ds-20219-a562b0.png

AirSim

Кросс-платформенный эмулятор для автомобилей, дронов и прочей техники. Создан на базе Unreal Engine. Поддерживает программно-аппаратное моделирование с известными полётными контроллерами, например, PX4. Позволяет создавать симуляции с весьма реалистичной графикой и физикой.

19ds-20219-1b675f.png

Deep image prior

Глубокая свёрточная нейронная сеть, позволяющая восстанавливать повреждённые изображения. Вы сможете восстановить картинки с пробелами и размытыми пятнами, убрать артефакты, шум, лишний текст.

20ds-20219-a58596.png

На этом всё, если хотите подробнее, вот вам источник на английском.

P. S. Очевидно, что в современном мире роль машинного обучения и искусственного интеллекта с каждым годом будет возрастать. Уже сегодня проектов становится всё больше, поэтому специалисты по Data Scientist нужны всё чаще. И если вы хотите закрепиться в этой динамично развивающейся области, повышайте свои навыки и приобретайте соответствующие знания. А лучший способ это сделать — пройти обучение у практикующих экспертов на курсе «Data Scientist».

Не пропустите новые полезные статьи!

Спасибо за подписку!

Мы отправили вам письмо для подтверждения вашего email.
С уважением, OTUS!

Автор
0 комментариев
Для комментирования необходимо авторизоваться
Популярное
Сегодня тут пусто
Новогодние скидки в Otus!-15% ❄️
Успейте забрать свою скидку до 20.12 →