Массивы (матрицы) в Python
Python — популярный и динамический язык программирования. Он позволяет решать разные задачи по разработке ПО, при выполнении которых часто используются массивы.
С их помощью вы сможете добавить однотипные данные и избежать дублирования кода.
Одномерные массивы в Python представляют собой список элементов. Значения указываются внутри квадратных скобок, где перечисляются через запятую. Как правило, любой элемент можно вызвать по индексу и присвоить ему новое значение.
Пустой список:
a = []
Массив строк в Python:
Prime = ['string1', 'string2', 'string3'] Prime[1] = 'string2'; //true
Чтобы возвратить число элементов внутри списка, используют функцию
len(Prime) == 4; // true
Когда нужно перечислить элементы массива, применяют цикл
for elem in [1, 4, 67]
Идём дальше. Создать и добавить цикл в Python можно с помощью генератора заполнения списков. Записывается он в следующем виде: [значение массива for имя переменной in число элементов];
Если говорить про создание не одномерного, а двумерного массива, то он в Python создаётся путём использования вложенных генераторов, и выглядит это так:
[[0 for j in range(m)] for i in range(n)]
Как создаются матрицы в Python?
Добавление и модификация массивов или матриц (matrix) в Python осуществляется с помощью библиотеки NumPy. Вы можете создать таким образом и одномерный, и двумерный, и многомерный массив. Библиотека обладает широким набором пакетов, которые необходимы, чтобы успешно решать различные математические задачи. Она не только поддерживает создание двумерных и многомерных массивов, но обеспечивает работу однородных многомерных матриц.
Чтобы получить доступ и начать использовать функции данного пакета, его импортируют:
import numpy as np
Функция
array = np.array(/* множество элементов */)
Для проверки используется функция
Если хотите сделать переопределение типа массива, используйте на стадии создания
array2 = np.array([ /*элементы*/, dtype=np.complex)
Когда стоит задача задать одномерный или двумерный массив определённой длины в Python, и его значения на данном этапе неизвестны, происходит его заполнение нулями функцией
np.zeros(2, 2, 2)
К примеру, так в Python происходит задание двух массивов внутри, которые по длине имеют два элемента:
array([ [[0, 0]] [[0, 0]]] )
Если хотите вывести одно- либо двумерный массив на экран, вам поможет функция
Базовые операции в NumPy
Все действия, производимые над компонентами массива, оборачиваются созданием нового массива. При этом массивы и матрицы взаимодействуют в том случае, если имеют один и тот же размер:
array1 = np.array([[1, 2, 3], [1, 2, 3]]) array2 = np.array([[1, 2, 3], [1, 2, 3], [1, 2, 3]])
Если выполнить array1 + array2, компилятор скажет об ошибке, а всё потому, что размер первого matrix равен двум, а второго трём.
array1 = np.array([1, 2, 5, 7]) array2 = arange([1, 5, 1])
В данном случае array1 + array2 вернёт нам массив со следующими элементами: 2, 4, 8, 11. Здесь не возникнет ошибки, т. к. матрицы имеют одинаковые размеры. Причём вместо ручного сложения часто применяют функцию, входящую в класс
np.array(array1 + array1) == array1 + array2
В ndarray входит большая библиотека методов, необходимых для выполнения математических операций.
Форма матрицы в Python
Lenght matrix (длина матрицы) в Python определяет форму. Длину матрицы проверяют методом
Массив с 2-мя либо 3-мя элементами будет иметь форму (2, 2, 3). И это состояние изменится, когда в
Те же задачи и ту же операцию выполнит
Есть методы и для манипуляции формой. Допустим, при манипуляциях с двумерными или многомерными массивами можно сделать одномерный путём выстраивания внутренних значений последовательно по возрастанию. А чтобы поменять в матрице строки и столбцы местами, применяют
Операции со срезами matrix в Python
Часто мы работаем не с целым массивом, а с его компонентами. Эти операции выполняются с помощью метода слайс (срез). Он пришел на замену циклу for, при котором каждый элемент подвергался перебору. Метод позволяет получать копии matrix, причём манипуляции выполняются в виде
Допустим, имеем целочисленный массив
otus[-2]; //[4]
Возможны и другие операции. Например, если добавить ещё одно двоеточие, будет указан шаг копируемых элементов. Таким образом, otus[::2] позволит вывести матрицу [1, 3].
Если ввести отрицательное значение, к примеру, [::-2] отсчёт начнётся с конца, и в результате произойдёт вывод [3, 1]. Остаётся добавить, что метод среза позволяет гибко работать с матрицами и вложенными списками в Python.
Хотите узнать гораздо больше? Записывайтесь на курс «Разработчик Python»!