Machine Learning. Advanced

Продвинутые приемы для практикующих
Data Scientists, желающих повысить свой профессиональный уровень до Middle+ /Senior

31 января 2024

Advanced

5 месяцев

Онлайн

Ср/Пт 20:00 Мск

Для кого этот курс?

Для специалистов в области Data Science и машинного обучения, решающих разнообразные исследовательские задачи и проблемы бизнеса: ранжирование, поиск одинаковых товаров, классификация изображений, динамическое ценообразования, оптимизация логистики, прогнозирование торговли и многие другие.  Курс даст сложные и широко применимые навыки.

  • Для аналитиков, освоите самые продвинутые методы машиного обучения и научитесь строить прогнозы
  • Для программистов, получите опыт построения end-to-end пайплайнов и выводы в production
  • Для Data Scientists, курс расширит ваши возможности и поможет продвинуться дальше по карьерному пути

Нужен курс для повторения и систематизации знаний?
Начните с Machine Learning Professional


Сравнение с курсом Machine Learning. Professional

Необходимые знания

  • Уверенное знание Python
  • Знакомство с основными библиотеками машинного обучения (pandas, sklearn, numpy)
  • Знание и понимание базовых принципов и алгоритмов машинного обучения
  • Знание математического анализа (вычисление производных сложных функций)
  • Знание линейной алгебры (матричные операции и собственные вектора)
  • Знание теории вероятностей и мат. статистики (понимание дисперсии, мат. ожидания, законы распределений).

Подходит ли эта программа именно вам?

Пройдите тест, чтобы определить свой уровень знаний.
При поддержке
логотип партнера

Что даст вам этот курс?

Вы изучите продвинутые методы машинного обучения, которые позволят вам уверенно себя чувствовать на ведущих Middle+ / Senior позициях и справляться с нестандартными задачами.

Вы освоите такие продвинутые темы как Байесовские методы и обучение с подкреплением, освоив как теоретическую часть, так и их применение на реальных кейсах.

Отдельный модуль посвящен работе в production: настройке окружения, оптимизации кода, построению end-to-end пайплайнов и внедрению решений.

После прохождения курса вы сможете:

  • Настраивать окружение и писать production код, готовый к внедрению
  • Работать с AutoML подходами и понимать ограничения в их применении
  • Понимать и уметь применять Байесовские методы и обучение с подкреплением для соответствующих задач
  • Решать нестандартные задачи, связанные с рекомендательными системами, временными рядами и графами

Проекты для портфолио


В течение курса вы выполните несколько проектов для портфолио и научитесь грамотно презентовать результаты своих работ, чтобы проходить собеседования. Для выпускного проекта вы можете взять один из предложенных преподавателем вариантов или реализовать свою идею.

Процесс обучения

Обучение проходит онлайн: вебинары, общение с преподавателями и вашей группой в Telegram, сдача домашних работ и получение обратной связи от преподавателя.

Вебинары проводятся 2 раза в неделю по 2 ак. часа и сохраняются в записи в личном кабинете. Вы можете посмотреть их в любое удобное для вас время.

В ходе обучения вы будете выполнять домашние задания. Каждое из них посвящено одному из компонентов вашего выпускного проекта.

После выполнения всех домашних заданий вы получите готовый выпускной проект.

Портфолио

Индивидуальная разработка проектной работы

Оптимальная нагрузка

Возможность совмещать учебу с работой

Перспективы

Сможете претендовать на позицию Data Scientist Middle+ / Senior 

Трудоустройство

Многие студенты еще во время прохождения первой части программы находят или меняют работу, а к концу обучения могут претендовать на повышение в должности.
  • Получите помощь с оформлением резюме, портфолио и сопроводительного письма
  • Разместите свое резюме в базе OTUS и сможете получать приглашения на собеседования от партнеров

ML engineer

Перспективы направления
Средний уровень зарплат в Москве:
100 000Junior+ специалист
200 000Middle+ специалист
350 000Senior специалист
1580
актуальных вакансий

Работодатели курса

Формат обучения

Интерактивные вебинары

2 онлайн-трансляции по 2 ак. часа в неделю. Доступ к записям и материалам остается навсегда

Практика


Домашние задания с поддержкой и обратной связью наших преподавателей помогут освоить изучаемые технологии

Активное комьюнити

Чат в Telegram для общения преподавателей и студентов

Программа

Production

Второй модуль полностью посвящен внедрению ML-проектов в прод. Мы подробно разберём сериализацию моделей, создание API и контейнеризацию в Docker и Kubernetes.

Тема 1: REST-архитектура: Flask API

Тема 2: Docker: Структура, применение, деплой

Тема 3: Kubernetes, контейнерная оркестрация

Тема 4: Практическое занятие по работе в проде: деплой докера в Yandex Cloud

Временные ряды

Данный модуль посвящен продвинутым методам работы с временными рядами. Мы разберём различные способы генерации признаков из временных рядов, а также две важные задачи, которые можно решать с таким типом данных: кластеризацию и сегментацию.

Тема 1: Извлечение признаков. Fourier и Wavelet transformation, Automatic Feature generation - tsfresh

Тема 2: Unsupervised подходы: Кластеризация временных рядов

Тема 3: Unsupervised подходы: Сегментация временных рядов

Тема 4: Прогнозирование временных рядов

Рекомендательные системы. Задача ранжирования

В этом модуле мы будем работать с различными типами рекомендательных систем. Рассмотрим случаи явного (explicit) и неявного (implicit) фидбека, а также крайне важную для рекомендаций задачу ранжирования - learning to rank. Также мы научимся работать с одной из самых популярных питоновских библиотек для рекомендательных систем.

Тема 1: Рекомендательные системы на практике.

Тема 2: Проблема холодного старта. Метод поиска ближайших соседей.

Тема 3: SVD и ALS алгоритмы.

Тема 4: Практическое занятие по рекомендательным системам. Двухуровневая модель.

Тема 5: Обзор нейросетевых моделей

Графы

В этом модуле мы научимся работать с новым типом данных - графами. Разберем самые широко используемые библиотеки: NetworkX, Stellar. Познакомимся с задачами Community Detection, Link Prediction и Node Classification.

Тема 1: Введение в графы: основные понятия. NetworkX, Stellar

Тема 2: Анализ графов и интерпретация. Community Detection

Тема 3: Link Prediction и Node Classification

Тема 4: Практическое занятие: Хейтеры в Twitter

Bayesian Learning, PyMC

В этом модуле мы познакомимся с очень важным и полезным направлением работы с данными (и не только) - байесовским обучением. В отличие от привычных нам моделей, где мы зачастую получаем точечную оценку коэффициентов и точечные же предсказания, в байесовской парадигме мы будем работать с целыми вероятностными распределениями и получать гораздо более мощные инструменты для работы с вероятностями. Мы подробно изучим теоретическую основу байесовских методов, включая способы получения оценок распределений при помощи сэмплирования, разберём байесовский подход к АB-тестированию, а также обобщенные линейные модели (GLM), способные решать задачи регрессии и классификации.

Тема 1: Введение в вероятностное моделирование, апостериорные оценки, сэмплирование

Тема 2: Markov Chain Monte-Carlo (MCMC), Metropolis–Hastings

Тема 3: Байесовское АB-тестирование

Тема 4: Generalized linear model (GLM) - байесовские регрессии, вывод апостериорных оценок коэффициентов

Тема 5: Практическое занятие по GLM

Тема 6: Практическое занятие по логит-регрессии

Тема 7: Байесовская сеть доверия: практическое занятие

Reinforcement Learning

Обучение с подкреплением (RL) - одно из очень перспективных направлений машинного обучения, которое находит всё больше применений на практике. Мы начнём с изучения теоретических основ RL, рассмотрим способ проведения АБ-тестов с использованием многоруких бандитов, а также разберём самые популярные алгоритмы: Markov Decision Process, Value Iteration, Policy Iteration, Temporal Difference, SARSA и Q-learning. При этом большой упор делается на практическое применение этих методов для решения реальных задач.

Тема 1: Введение в обучение с подкреплением

Тема 2: Multi-armed bandits для оптимизации AB-тестирования, от теории - сразу в бой

Тема 3: Практическое занятие: Multi-armed bandits в ecommerce: search оптимизация

Тема 4: Markov Decision Process, Value function, Bellman equation

Тема 5: Value iteration, Policy iteration

Тема 6: Monte Carlo Methods

Тема 7: Temporal Difference (TD) и Q-learning

Тема 8: SARSA и Практическое занятие: финансовый кейс TD и Q-learning

Тема 9: Q&A

Advanced Machine Learning. AutoML

В этом модуле мы научимся грамотно структурировать код production ML-проекта с использованием виртуальных оболочек и менеджеров зависимостей. Также мы познакомимся с продвинутыми методами оптимизации кода и новыми способами кодирования категориальных переменных. Мы научимся работать с самыми популярными библиотеками для AutoML, поймём их преимущества и недостатки, а также области применения на практике.

Тема 1: Production Code проекта на примере задачи классификации/регрессии, Virtual environments, dependency management, pypi/gemfury

Тема 2: Практическое занятие - Оптимизация кода, parallelization, multiprocessing, ускорение pandas, Modin для Pandas

Тема 3: Advanced Data Preprocessing. Categorical Encodings

Тема 4: Featuretools - а вы что, за меня и признаки придумывать будете?

Тема 5: H2O и TPOT - а вы что, за меня и модели строить будете?

Тема 6: Поиск нечетких дублей

Тема 7: Практическое занятие - Построение end-to-end пайплайнов и сериализация моделей

Проектная работа

Заключительный месяц курса посвящен проектной работе. Свой проект — это то, над чем интересно поработать слушателю. То, что можно создать на основе знаний, полученных на курсе. При этом не обязательно закончить его за месяц. В процессе написания по проекту можно получить консультации преподавателей.

Тема 1: Выбор темы проекта

Тема 2: Бонус: Поиск Data Science работы

Тема 3: Предзащита проектных работ №1

Тема 4: Предзащита проектный работ №2

Тема 5: Защита проектных работ

Также вы можете получить полную программу, чтобы убедиться, что обучение вам подходит

Проектная работа


Мы стремимся, чтобы студенты самостоятельно выбирали темы для выпускных проектов, а не работали по шаблонным заготовкам. В результате все работы получаются уникальными исследовательскими проектами по машинному обучению, о которых с большим интересом можно рассказывать во время собеседований или даже публиковать статьи.

Например:
Полученные в итоге артефакты усилят ваше резюме.

Преподаватели

Руководитель курса

Мария Тихонова

PhD Computer Science, Senior Data Scientist

SberDevices, ВШЭ

Андрей Канашов

Senior Data Scientist

BestDoctor

Виталий Сидоренко

Senior Data Scientist

Магнит

Раиль Сулейманов

Machine Learning Engineer

Garage IT

Максим Бекетов

Аспирант

ФКН ВШЭ

Александр Брут-Бруляко

DS инженер (к.э.н.)

СБЕР Neurolab

Алексей Кисляков

преподаватель/ученый-исследователь (д.э.н., к.т.н.)

Российская академия народного хозяйства и государственной службы при Президенте РФ (Владимирский филиал)

Вероника Иванова

Data Scientist

Домклик

Дмитрий Гайнуллин

Machine Learning Engineer

AIC

Игорь Стурейко

Teamlead, главный инженер (к.ф.-м.н.)

НИИгазэкономика

Эксперты-практики делятся опытом, разбирают кейсы студентов и дают развернутый фидбэк на домашние задания

Ближайшие мероприятия

Открытый вебинар — это настоящее занятие в режиме он-лайн с преподавателем курса, которое позволяет посмотреть, как проходит процесс обучения. В ходе занятия слушатели имеют возможность задать вопросы и получить знания по реальным практическим кейсам.

Рекомендательные системы на основе матричных разложений
Мария Тихонова
На занятии вы изучите основные алгоритмы, основанные на матричных разложениях для рекомендательных систем. Изучите алгоритм SVD и ALS, а также примените их на практике.

Результаты урока:
- Познакомитесь с задачей рекомендательных систем.
- Изучите подходы на основе Sматричнычных разложений для построения рекомендательной системы.
- Примените алгоритмы SVD и ALS на практике

Кому подходит этот урок:
- продвинутым IT-специалистам, практикующим ML
- Дата-сайентистам, желающим углубиться в профессию
- Тем кто самостоятельно изучает Data Science и уже изучил основные методы ML
...
18 января в 15:00
Открытый вебинар

Прошедшие
мероприятия

Максим Бекетов
Открытый вебинар
Байесовское А/B-тестирование
Игорь Стурейко
Открытый вебинар
Построение эффективных пайплайнов с помощью sklearn
Для доступа ко всем прошедшим мероприятиям необходимо пройти входное тестирование
Возможность пройти вступительное тестирование повторно появится только через 3 дня
Результаты тестирования будут отправлены вам на email, указанный при регистрации.
Тест рассчитан на 30 минут, после начала тестирования отложить тестирование не получится!

Корпоративное обучение для ваших сотрудников

Отус помогает развивать высокотехнологичные Команды. Почему нам удаётся это делать успешно:
  • Курсы OTUS верифицированы крупными игроками ИТ-рынка и предлагают инструменты и практики, актуальные на данный момент
  • Студенты работают в группах, могут получить консультации не только преподавателей, но и профессионального сообщества
  • OTUS проверяет знания студентов перед стартом обучения и после его завершения
  • Простой и удобный личный кабинет компании, в котором можно видеть статистику по обучению сотрудников
  • Сертификат нашего выпускника за 5 лет стал гарантом качества знаний в обществе
  • OTUS создал в IT более 120 курсов по 7 направлениям, линейка которых расширяется по 40-50 курсов в год

Отзывы

Сергей Новожилов

11.11.2020
Учусь в Otus на курсе ML Advanced, доволен очень. Преподают из всех уголков мира, по Zoom, вроде привык уже к удалёнке, но всё равно поражает. - По-настоящему классные специалисты. - Цена курсов разумная. Я когда покупал первый раз, долго и недоверчиво выяснял, как, если что не так, вернуть деньги. На мой взгляд, Отусу было бы выгодно поагрессивнее записывать на курс, потом, после 3-го занятия, скажем, решать вопрос с оплатой, а то на покупку кота в мешке 50к многие не решатся выложить. Сейчас не жалею, буду еще брать курсы у них. Из пожеланий: - получше с записью вебинаров разобраться, чтобы технических сбоев было поменьше, корпоративный Zoom это вроде позволяет

IGOR GARAEV

11.11.2020
Добрый день! курс дал обширные знания и заложил основания в новых областях : байесовского вывода, многоруких бандитов ,A/B тестирования,  временных рядов (кластеризация, вейвлеты, FFT ) и RL.     В постоянно меняющихся условиях бизнеса и новых ограничений(например:GDPR,IOS14 к системе трекинга, новые требования 2022 google к трекингу)  - происходит бурное развитие новых инструментов и подходов в маркетинге и продукте, которые  требует понимания и применения вышеперечисленных тем.      Данный курс под руководством инструктора - позволил  освоить теоретический материал и закрепить его на практике с помощью большого количества показанных примеров и домашних заданий.  Это фундамент позволит мне самостоятельно далее развиваться в данной области и применять на практике в  бизнесе.

Владислав Лещинский

22.12.2021
Ну конечно обогатил копилку знаний. При некоторых нареканиях по форме преподавания, содержательно было хорошо это стало уже понятно когда смотришь на курс целиком. Остались мысли на додумывание в части попробовать применить в работе, а это точно значит, что информация ценная.

Mark Mzhachikh

18.02.2022
Благодарен курсу за то, что узнал о существовании coursera. А если серьезно, то большое спасибо Марии Тихоновой - очень глубокое понимание предметной области + огромный преподавательский талант, просто восторг.

Андрей Шитов

28.09.2023
В OTUS пришел проверить и расширить свои знания, т.к. ML я учил самостоятельно по книгам и другим курсам. В курсе Advanced ML OTUS рассматривается интересный набор тем, развивающий кругозор людей уже знакомых с машинным обучением. Мне было интересно послушать про временные ряды, рекомендательные системы, Bayesian ML и Reinforcment Learning. Курс состоит из 7 блоков, в каждом из которых высокоуровнево рассматривается отдельная тема. Для глубокого рассмотрения почти каждой из них потребовался бы отдельный курс, поэтому обычно дается общий обзор, а также изучается один или несколько основных алгоритмов по этой теме. Мне наиболее интересно было слушать те лекции, где преподавателям удавалось погрузиться в тему как можно глубже теоретически и при этом успеть показать как она применяется на практике. Здорово, что часть преподавателей занимаются промышленным ML (работа связяна с ML), это позволяет узнать что такое data scientiest/engineer/researcher из первых уст. Обычно я задавал вопросы про проекты и профессиональную деятельность преподавателей, думаю, было бы здорово если материал, где преподаватели рассказывают про свои проекты и особенности профессии, входил в курс. Если говорить о недоработках могу ометить следующее:  Курс начинается с довольно технического и скучного блока про инфраструктурные вещи и AutoML и излагается в довольно сухой манере. Хочется отметить следующих преподавателей: Борис Цейтлин, Мария Тихнонова, Александр Миленькин и Максим Бекетов (5+, очень классно рассказывает). Их было реально интересно слушать и видно что они разбираются в предмете. В конце курса нужно реализовать полноценный ML-проект по одной из пройденных тем. Рекомендую вновь пришедшим на курс выбирать тему как можно раньше и закладывать больше времени под реализацию.

Павел Подстрешный

10.11.2023
Я Data Scientist по образованию. Из курсов учился ранее на степике, на курсера и в скиллбокс. Выбрал курс Machine Learning Advanced в OTUS, т.к. он отвечает моим запросам. Понравилась подача материала от лекторов (хотя не у всех это получалось), домашние задания, подробная обратная связь от проверяющих домашние задания. Обучение дало мне дополнительный стимул в развитии, расширило понимание Data Science, ответило на многие вопросы. Думаю, новые изменения в работе еще будут позже.

Татьяна Коренькова

12.11.2023
OTUS представил уникальный курс по машинному обучению, аналогов которому я не нашла ни на одной другой платформе, так как тут освещается очень много нетривиальных тем для продвинутого обучения: и рекомендательные системы, и графы, и временные ряды, и ML OPS, и обучение с подкреплением, и даже дополнительная математика. Это отличный стартовый набор для того, чтобы двигаться в любое интересующее направление, и я для себя нашла очень много интересных тем и идей для развития. Плюс ко всему, очень выгодные и удобные условия, есть большой простор для творчества при выполнении ДЗ и итогового проекта. Преподаватели и проверяющие домашние задания всегда готовы прийти на помощь и подробно все объяснить и рассказать. Также есть возможность опубликовать статью на habr, получить карьерные консультации и сильно прокачать свое резюме, так как задания действительно сложные и нешаблонные. В принципе никаких замечаний нет, разве что не всегда весь материал с занятий был понятен и подробно объяснен с самого начала, но тут скорее из-за ограничений по времени и недостаточности базовой подготовки. Возможно, было бы полезно добавить небольшой блок по NLP :)

Сергей Паршин

12.11.2023
Я работаю в роли руководителя цифровых проектов (обычно математических и насыщенных инженерными расчётами). Учился по Data Science в МФТИ, у разработчиков Sci-kit learn, Stepik, ODS. Базовые образование - инженерное в МГТУ им. Н.Э.Баумана. Выбрал этот курс, так как интересны были темы по обработке TineSeries данных, Баесовским методам, Reinforcement learning. Не понравилось, что основные материалы и используемые библиотеки были устаревшими. Понравилась возможность напрямую написать / обсудить тему с преподавателем и возможность сдать ДЗ (и его обсудить) в любой момент. Курс пока что дал мне расширение знаний и возможностей по работе с данными, покрытие разных областей Data Science. Обычно специалист по Data Science специализируется на определённой специфике Науки о данных. Взгляд на соседние области расширяет картину возможных решений и их применимость в различных задачах «в бою».

Екатерина Самойлова

15.11.2023
Курсы считаю полезными и интересными, все очень сильно зависело от преподавателя. Было интересно слушать Веронику Ивановну по рекомендательным системам, Максим Бекетов отлично рассказал теорию по Байесу, прям на пальцах разложил. Андрей Канашов во время лекции задает аудитории вопросы, что позволяет больше вовлечься в процесс и не отключаться на лекции. Домашние задания были очень разнообразными и увлекательными, я с удовольствием разбиралась и решала. Хочу отметить, что была отличная проверка домашнего задания от Артема Червякова, он мне такую обратную связь давал крутую, помогал разобраться и вообще очень тщательно проверял домашнюю работу. Но иногда не хватало ответов от самих преподавателей, например, приходила даже в личку к Максиму Бекетову, он не ответил, в общем чате тоже тишина. Как-то создается ощущение, что ты одиночка на курсах и только человек, который проверяет домашку - помогал не бросить курс. И понимаю, что есть плюсы, и минусы от смены преподавателя. Но по Байесу получилось, что два преподавателя повторили одну и туже теорию. Повторение - мать учения, но как-то хотелось бы именно на таких курсах отсутствия дублирования информации. Еще показалось, что не хватает предварительной информации перед следующей лекцией, какие определения, формулы или что посмотреть. Может даже заранее загруженный ноутбук/ссылка на колаб, чтобы можно было позагружать, потыкать и посмотреть. Потому что хотелось бы больше задать вопросов лектору, на лекции ты пока вникнешь – а на следующей уже может быть другой преподаватель. Впрочем, они не так часто менялись, но все же. Так я ушла с багажом знаний и очень довольна. Преподавателям большое спасибо за такой труд, понимаю, это все очень непросто. В будущем хотелось бы чуть больше активности.

Олег Николаев

20.11.2023
Я работаю аналитиком данных, учился в Сколтехе. Понравилось в курсе то, что мы охватили множество тем, большой круг различных задач, которые удалось рассмотреть. Не понравилось то, что иногда преподаватели, как мне показалось, недостаточно глубоко разбирались в некоторых аспектах тем. На мой взгляд, в домашках нас не сильно нагружали, они были не слишком сложные. Мне не понравилось, что нам иногда говорили: «Вы можете сами, при желании, копнуть глубже».    Обучение дало понимание областей ML, в которых я не работал. Мне удалось повысить свой уровень, выполнив финальный проект. Нужно было разобраться в той теме, в которой мне и хотелось научиться разбираться – вывод моделей в прод. В целом хочу сказать спасибо за курс, хотя я считаю, что курсу есть куда расти - у меня остались скорее положительные впечатления, нежели чем негативные.

Сертификат о прохождении курса

OTUS осуществляет лицензированную образовательную деятельность. В конце прохождения курса вы получите сертификат OTUS.

После обучения вы:

  • Получите материалы по пройденным занятиям (видеозаписи курса, дoполнительные материалы, финальный проект для добавления в портфолио)
  • Создадите своё портфолио проектов, которое поможет при прохождении собеседований
  • Повысите свою ценность и конкурентоспособность как IT-специалист
  • Получите сертификат об окончании курса

Частые вопросы

Почему стоит выбрать учебу в Otus?
Образовательная экспертиза Otus доказана более 6 лет успешной специализации на обучении в IT. Наша фишка — продвинутые программы для специалистов с опытом и быстрый запуск курсов по новым набирающим популярность технологиям. Мы уже обучили более 20 000 студентов, и будем рады помочь освоить вам новые навыки.
Что является наиболее ценным по мнению выпускников курса?
На курсе Machine Learning Advanced вы получите самые свежие знания, которые сразу же можно применить в работе. Домашние задания сопровождаются письменной обратной связью, и вы всегда можете задать вопрос в закрытый чат группы или голосом на вебинаре. А для защиты итогового проекта у вас будет несколько этапов, где вы сможете получить консультацию по проекту и преодолеть трудности его выполнения. Некоторые студенты для финального проекта берутся выполнять рабочую задачку и защищаются с сохранением NDA.
Обязательно ли выполнять и защищать выпускной проект?
Для получения сертификата OTUS и УПК (удостоверение повышения квалификации государственного образца) необходимо сдать проект. Кроме того, проект необязательно защищать перед аудиторией, а можно сдать в чате с преподавателем. Для получения УПК также понадобится предъявить документ об образовании.
Обязательно ли выполнять все домашние задания?
Нет, не обязательно. Но выполнение домашних заданий поможет вам разобраться в материале курса, поэтому хотя бы часть домашних заданий стоит выполнить. При выполнении или сдаче домашнего задания, вы можете задать вопрос преподавателям, если где-то возникли сложности.
Помогаете ли вы с трудоустройством после курса?
В Otus Club проводятся вебинары на тему трудоустройства, разбор резюме, прохождения собеседований, особенности реферальных программ при найме. Также обратим ваше внимание, что преподаватели курса занимают ведущие позиции в разных компаниях. Будьте активны, выполняйте домашние задания, стройте network с сокурсниками и преподавателями, и вам будет проще найти работу, расширив свои контакты.
Смогу ли я совмещать учебу с работой?
Да, программа курса рассчитана на то, что студент имеет ограниченный временной ресурс. 1 раз в модуль будут выдаваться домашние задания, а лекции 2 раза в неделю, которые вы всегда можете посмотреть в записи.
Что, если в середине курса я не смогу продолжать обучение?
У Вас есть право одного бесплатного трансфера в другую группу. Лекции курса у вас останутся в личном кабинете навсегда. Также есть отдельные опции по сдаче домашних заданий даже после окончания программы курса.
Я могу вернуть деньги?
Да, вы можете сделать возврат средств пропорционально оставшимся месяцам обучения.
Может ли мой работодатель оплатить курс?
Конечно, мы работаем с юр. лицами. При общении с менеджером уточните, что оплачивать будет ваш работодатель.
Остались вопросы?
Оставляйте заявку и задавайте вопросы менеджеру, команда курса с ним на связи и постарается дать вам исчерпывающую информацию.