Курс переработан
Machine Learning. Advanced
Продвинутые ML приемы для Data Scientists, желающих повысить свой профессиональный уровень до Middle+
28 февраля
Advanced
6 месяцев
Онлайн
Вт/Пт 20:00 Мск
Для кого этот курс?
- Для аналитиков: научитесь применять методы машинного обучения в прогнозах
- Для программистов: научитесь строить end-to-end пайплайны и выводить ML-модели в production
- Для Data Scientist's и ML инженеров: усовершенствуйте навыки и продвигайтесь по карьерной лестнице
Необходимые знания
- Python (pandas, sklearn, numpy)
- Понимание базовых принципов и алгоритмов ML
- Математический анализ (вычисление производных сложных функций)
- Линейная алгебра (матричные операции и собственные вектора)
- Теория вероятностей и мат. статистики (понимание дисперсии, мат. ожидания, законы распределений).
Чувствуете, что Machine Learning. Advanced – это слишком хардкорно?
Начните с Machine Learning Professional
Сравнение с курсом Machine Learning. Professional
Подходит ли эта программа именно вам?
Пройдите короткий тест, который проверяет ваше знание пререквизитов, а именно математики и питона, которые понадобятся вам на курсе
Что даст вам этот курс?
После вебинара вы получаете Jupyter Notebook с разбором практического кейса с занятия. По итогу курса у вас будет обширная база знаний по каждому модулю.
Что вы сможете после обучения:
- Настраивать окружение и писать production код, готовый к внедрению
- Работать с AutoML подходами и понимать ограничения в их применении
- Понимать и уметь применять Байесовские методы и обучение с подкреплением для соответствующих задач
- Решать сложные задачи, связанные с рекомендательными системами, временными рядами и RL, например: ранжирование, поиск одинаковых товаров, классификация изображений, динамическое ценообразования, оптимизация логистики, прогнозирование торговли и многие другие.
- Применение обучения с подкреплением на основе алгоритма DQN в торговле фьючерсными контрактами
- Зависимость курса российского рубля (RUR) к доллару США (USD) от стоимости нефти, никеля, алюминия, золота, пшеницы
- Предсказания оптических свойств молекул по их структуре: поиск новых флуорофоров в теле человека
Нужны специализированные знания?
Посмотрите направления:
Computer VisionReinforcement Learning
Natural Language Processing
Hard skills
Flask API, Docker, EDA, ARIMA / SARIMA, LSTM / GRU / Transformers, userKNN, itemKNN, SVD и ALS, sequential, session-based подходы, Community Detection, Link Prediction и Node Classification, PyMC, GLM, RL, H2O и TPOT; Библиотеки: tsfresh и tsfel, NetworkX, StellarПроцесс обучения
Занятия в OTUS – это вебинары.
Преподаватели-практики помогут погрузиться в теорию, обучат на реальных примерах, расскажут о необходимых в работе инструментах.
Вы всегда сможете задать вопрос и получить исчерпывающий ответ. И самое главное – сможете практиковаться.
Учитесь онлайн отовсюду. А если вдруг пропустите занятие, просто посмотрите запись.
Оптимальная нагрузка
Совмещайте учёбу и работу, у вас получитсяЭксперты
Преподаватели из разных сфер, каждый со своим уникальным опытомПерспективы
Смело претендуйте на позиции Middle+ Data Scientist.Карьерная поддержка
- Разместите свое резюме в базе OTUS и сможете получать приглашения на собеседования от партнеров
- Карьерные мероприятия в сообществе
Публичный разбор резюме
Публичное прохождение собеседования и воркшопы
ML engineer
Работодатели курса
Интерактивные вебинары
2 онлайн-трансляции по 2 ак. часа в неделю. Доступ к записям и материалам остается навсегдаПрактика
Домашние задания и проектная работа усилят портфолио и прокачают навыки
Активное комьюнити
Общение с преподавателями на вебинарах, переписки в закрытом телеграм-чате, развёрнутые ответы при проверке домашних заданий
Программа
Временные ряды
Данный модуль посвящен продвинутым методам работы с временными рядами. Мы разберём различные способы генерации признаков из временных рядов, а также две важные задачи, которые можно решать с таким типом данных: кластеризацию и сегментацию.
Тема 1: Извлечение признаков. Fourier и Wavelet transformation, Automatic Feature generation - tsfresh
Тема 2: Unsupervised подходы: Кластеризация временных рядов
Тема 3: Unsupervised подходы: Сегментация временных рядов
Тема 4: Прогнозирование временных рядов
Тема 5: Поиск аномалий во временных рядах
Рекомендательные системы. Задача ранжирования
В этом модуле мы будем работать с различными типами рекомендательных систем. Рассмотрим случаи явного (explicit) и неявного (implicit) фидбека, а также крайне важную для рекомендаций задачу ранжирования - learning to rank. Также мы научимся работать с одной из самых популярных питоновских библиотек для рекомендательных систем.
Тема 1: Введение в теорию рекомендательных систем и их практическое применение
Тема 2: Проблема холодного старта. Метод поиска ближайших соседей
Тема 3: SVD и ALS алгоритмы
Тема 4: Практическое занятие по рекомендательным системам. Двухуровневая модель
Тема 5: Обзор нейросетевых моделей
Bayesian Learning, PyMC
В этом модуле мы познакомимся с очень важным и полезным направлением работы с данными (и не только) - байесовским обучением. В отличие от привычных нам моделей, где мы зачастую получаем точечную оценку коэффициентов и точечные же предсказания, в байесовской парадигме мы будем работать с целыми вероятностными распределениями и получать гораздо более мощные инструменты для работы с вероятностями. Мы подробно изучим теоретическую основу байесовских методов, включая способы получения оценок распределений при помощи сэмплирования, разберём байесовский подход к АB-тестированию, а также обобщенные линейные модели (GLM), способные решать задачи регрессии и классификации.
Тема 1: Введение в вероятностное моделирование, апостериорные оценки, сэмплирование
Тема 2: Markov Chain Monte-Carlo (MCMC), Metropolis–Hastings
Тема 3: Байесовское АB-тестирование
Тема 4: Generalized linear model (GLM) - байесовские регрессии, вывод апостериорных оценок коэффициентов
Тема 5: Практическое занятие по GLM
Тема 6: Практическое занятие по логит-регрессии
Тема 7: Байесовская сеть доверия: практическое занятие
Reinforcement Learning
Обучение с подкреплением (RL) - одно из очень перспективных направлений машинного обучения, которое находит всё больше применений на практике. Мы начнём с изучения теоретических основ RL, рассмотрим способ проведения АБ-тестов с использованием многоруких бандитов, а также разберём самые популярные алгоритмы: Markov Decision Process, Value Iteration, Policy Iteration, Temporal Difference, SARSA и Q-learning. При этом большой упор делается на практическое применение этих методов для решения реальных задач.
Тема 1: Введение в обучение с подкреплением
Тема 2: Multi-armed bandits для оптимизации AB-тестирования, от теории - сразу в бой
Тема 3: Практическое занятие: Multi-armed bandits в ecommerce: search оптимизация
Тема 4: Markov Decision Process, Value function, Bellman equation
Тема 5: Value iteration, Policy iteration
Тема 6: Monte Carlo Methods
Тема 7: Temporal Difference (TD) и Q-learning
Тема 8: SARSA и Практическое занятие: финансовый кейс TD и Q-learning
Тема 9: Deep Q-Network (DQN) алгоритм
Тема 10: Deep Policy Gradient (PG) алгоритм
Тема 11: Actor-Critic алгоритм
Production
Модуль полностью посвящен внедрению ML-проектов в прод. Мы подробно разберём сериализацию моделей, создание API и контейнеризацию в Docker и Kubernetes.
Тема 1: Production Code проекта на примере задачи классификации/регрессии, Virtual environments, dependency management, pypi/gemfury
Тема 2: REST-архитектура: Flask API
Тема 3: Docker: Структура, применение, деплой
Тема 4: Сети и Docker compose
Тема 5: Практическое занятие по работе в проде: деплой докера в Yandex Cloud
Тема 6: Колоночные БД и объектные хранилища
Тема 7: Версионирование данных. DVC
Тема 8: Воспроизводимость и версионирование. MLFlow
Production. AutoML
В этом модуле мы научимся грамотно структурировать код production ML-проекта с использованием виртуальных оболочек и менеджеров зависимостей. Также мы познакомимся с продвинутыми методами оптимизации кода и новыми способами кодирования категориальных переменных. Мы научимся работать с самыми популярными библиотеками для AutoML, поймём их преимущества и недостатки, а также области применения на практике.
Тема 1: Практическое занятие - Оптимизация кода, parallelization, multiprocessing, ускорение pandas, Modin для Pandas
Тема 2: Advanced Data Preprocessing. Categorical Encodings
Тема 3: Featuretools - а вы что, за меня и признаки придумывать будете?
Тема 4: H2O и TPOT - а вы что, за меня и модели строить будете?
Тема 5: Поиск нечетких дублей
Тема 6: Практическое занятие - Построение end-to-end пайплайнов и сериализация моделей
Проектная работа
Заключительный месяц курса посвящен проектной работе. Свой проект — это то, над чем интересно поработать слушателю. То, что можно создать на основе знаний, полученных на курсе. При этом не обязательно закончить его за месяц. В процессе написания по проекту можно получить консультации преподавателей.
Тема 1: Выбор темы проекта
Тема 2: Предзащита проектных работ №1
Тема 3: Предзащита проектный работ №2
Тема 4: Защита проектных работ
Бонусный модуль NLP
Нейросетевые языковые модели и практические методы применения LLM и фундаментальных моделей.
Тема 1: Нейросетевые языковые модели и стратегии генерации текста
Тема 2: Машинный перевод и seq2seq
Тема 3: Архитектура Transformer и концепция attention mechanism
Тема 4: Transfer learning; BERT model
Тема 5: Генеративные языковые модели GPT3 и методы few, zero-shot learning
Тема 6: Towards ChatGPT
Тема 7: Теория промптинга LLM
Тема 8: Sentence-transformers
Тема 9: Langchain
Тема 10: RAG - генерация на основе базы знаний
Бонусный модуль Графы
В этом модуле мы научимся работать с новым типом данных - графами. Разберем самые широко используемые библиотеки: NetworkX, Stellar. Познакомимся с задачами Community Detection, Link Prediction и Node Classification.
Тема 1: Введение в графы: основные понятия. NetworkX, Stellar
Тема 2: Анализ графов и интерпретация. Community Detection
Тема 3: Link Prediction и Node Classification
Тема 4: Практическое занятие: Хейтеры в Twitter
Также вы можете получить полную программу, чтобы убедиться, что обучение вам подходит
Проектная работа
Студенты выбирают темы выпускных проектов сами, а не работают по шаблонным заготовкам. Все выпускные проекты на курсе это ценные исследования для ML. Вот некоторые из них:
Преподаватели
Эксперты-практики делятся опытом, разбирают кейсы студентов и дают развернутый фидбэк на домашние задания
Ближайшие мероприятия
Бесплатный открытый вебинар - онлайн-занятие с преподавателем курса. На открытом вебинаре можно посмотреть, как проходит обучение, а ещё узнать что-то ценное по интересующей теме. На занятии слушатели могут задавать ведущему вопросы.
Данный открытый урок будет интересен:
- продвинутым IT-специалистам, практикующим ML
- Дата-сайентистам, желающим углубиться в профессию
- Тем кто самостоятельно изучает Data Science и уже изучил основные методы ML
В результате вебинара вы:
- освоите базовые принципы рекомендательных систем
- изучите как строить рекомендательные системы на основе алгоритмов SVD и ALS
На практической части занятия мы:
- перенесем модель из Jupyter notebook в отдельную модель Python;
- создадим API для нашей ML модели;
- подготовим эндпоинты и напишем валидатор передаваемых параметров;
- протестируем работу нашей модели как отдельного сервиса.
Занятие будет полезно ML инженерам, которые хотят научится готовить свои модели к выходу в продакшн и разработчикам, которые имеют дело с ML кодом и хотят лучше понимать связь между ML моделью и готовым сервисом.
На практической части вебинара мы:
- запустим docker и научимся работать с контейнерами;
- напишем Dockerfile для упаковки нашей модели в контейнер;
- запустим контейнер с нашей моделью и протестируем ее работу;
- создадим простую микросервисную архитектуру и напишем docker-compose файл конфигурации для ее запуска.
Вебинар будет полезен разработчикам, Data, ML и MLOps инженерам, которые хотят освоить работу с контейнерами и научится упаковывать и распространять готовые решения в виде контейнеров.
Прошедшие
мероприятия
Возможность пройти вступительное тестирование повторно появится только через 3 дня
Результаты тестирования будут отправлены вам на email, указанный при регистрации.
Тест рассчитан на 30 минут, после начала тестирования отложить тестирование не получится!
Корпоративное обучение для ваших сотрудников
- Курсы OTUS верифицированы крупными игроками ИТ-рынка и предлагают инструменты и практики, актуальные на данный момент
- Студенты работают в группах, могут получить консультации не только преподавателей, но и профессионального сообщества
- OTUS проверяет знания студентов перед стартом обучения и после его завершения
- Простой и удобный личный кабинет компании, в котором можно видеть статистику по обучению сотрудников
- Сертификат нашего выпускника за 5 лет стал гарантом качества знаний в обществе
- OTUS создал в IT более 120 курсов по 7 направлениям, линейка которых расширяется по 40-50 курсов в год
Отзывы
Сертификат о прохождении курса
OTUS осуществляет лицензированную образовательную деятельность. Вы получите сертификат о прохождении обучения, а также можете получить удостоверение о повышении квалификации.
После обучения:
-
Удостоверение о повышении квалификации: если вы успешно защитили выпускной проект и готовы предоставить копию документа о высшем или среднем профессиональном образовании
-
Доступ к учебным материалам курса
-
Ваш личный проект, который поможет проходить собеседования
Machine Learning. Advanced
Полная стоимость
Стоимость указана для оплаты физическими лицами
вычета до 13% стоимости обучения. Пройдите тестирование и менеджер вас проконсультирует
+7 499 938-92-02 бесплатно