Аналитик данных
Освойте мощные навыки анализа данных:
анализ требований + статистика + BI
28 марта
4 месяца
Онлайн
Вт/Пт 19:00 Мск
Для кого этот курс?
- Для дата-аналитиков уровня Junior, которые стремятся систематизировать и углубить свои знания.
- Для специалистов по отчетности, которые строят её вручную или в полуавтоматическом режиме в Excel и хотят научиться делать это быстрее и эффективнее.
- Для выпускников вузов, желающих работать в области анализа данных и обладающих необходимым минимумом знаний для старта.
- Для маркетологов, продакт-менеджеров, бизнес-аналитиков, экономистов, специалистов по планированию, желающих сократить свою ежедневную рутину до минимума.
Необходимые знания
- Продвинутый Excel (минимум - сводные таблицы, формулы, графики)
- Базовые знания в области матанализа и статистики
- Желательно - базовые навыки программирования
- Общее представление о том, что такое анализ данных и зачем он нужен
- Внимательность к деталям
Что даст вам этот курс?
Команда экспертов отобрала всю самую полезную информацию для старта карьеры в области анализа данных в оптимальном объеме! Акцент делается на практическую применимость каждого метода в реальной жизни.
В программе курса "Аналитик данных" совмещены и особенности общения со стейкхолдерами с позиции основ бизнес-анализа, и техника с позиции дата-анализа, и BI, так как необходимо уметь не только качественно анализировать данные, но и наглядно их визуализировать. В реальности совмещение этих трех (в идеале - изолированных) ролей происходит весьма часто. Наш выпускник будет готов к такому варианту развития событий и будет знать, какие навыки прокачивать в дальнейшем в зависимости от особенностей места работы.
В результате вы овладете необходимыми инструментами, чтобы получить старт в новой профессии или существенно снизить количество ежедневной рутины на текущем месте работы.
После обучения вы сможете:
- Работать в области анализа данных, начиная с junior-ступени
- Общаться со стейкхолдерами и обсуждать запрос на анализ данных, уточнять требования
- Предобрабатывать и исследовать сырые данные, статистически описывать данные и готовить их к дальнейшему анализу
- Писать SQL- и Python-код для целей анализа и визуализации данных
- Использовать BI-платформы для базовой и продвинутой визуализации данных, создавать дашборды и дата-стори
- Презентовать результаты работы и находить правильные слова "просто о сложном"
- Иметь представление о различных инструментах в сфере дата-анализа, а также о возможных путях дальнейшего развития в области ML и Data Science
Кто такой аналитик данных?
Аналитик данных (Data Analyst) - это специалист по работе с большими данными. Он собирает их, анализирует, визуализирует и делает выводы. На основании полученных гипотез компании принимают важные для бизнеса решения.
Процесс обучения
- Посещайте 2 онлайн-трансляции по 2 ак. часа в неделю. Доступ к записям и материалам остается навсегда.
- Изучите материал через призму полученных ранее компетенций: общайтесь с преподавателями в диалоге и объедините свой опыт с экспертной оценкой преподавателя.
- Выполняйте домашние задания и применяйте на практике знания, полученные на занятиях. По каждому домашнему заданию преподаватель дает развернутый фидбек.
- Задавайте преподавателю уточняющие вопросы: в течение всего учебного процесса преподаватель находится в чате с группой
Практические навыки
Системный подход
Портфолио
Карьерная поддержка
- Карьерные мероприятия в сообществе
Публичный разбор резюме
Публичное прохождение собеседования и воркшопы - Разместите свое резюме в базе OTUS и сможете получать приглашения на собеседования от партнеров
Работодатели курса
Формат обучения
Интерактивные вебинары
2 онлайн-трансляции по 2 ак. часа в неделю. Доступ к записям и материалам остается навсегда
Практика
Домашние задания + проектная работа, которая усилит ваше портфолио
Активное комьюнити
Общайтесь с преподавателями голосом на вебинарах и в Telegram-чате
Программа
Принятие решений в бизнесе на основе данных
В этом модуле мы рассмотрим основные этапы реализации проекта от момента появления идеи до итогового представления результатов и постпродакшена.
Тема 1: Введение в профессию «Аналитик данных»
Тема 2: Принятие решений в бизнесе на основе данных
Тема 3: Сбор требований и прототипирование
Тема 4: Итеративная работа с заказчиком на этапе разработки
Тема 5: Этап релиза и мониторинг востребованности // ДЗ
СУБД и SQL
В этом модуле мы рассмотрим введение в теорию БД, обзор и создание БД, написание запросов, аналитику и построение отчётов с помощью SQL.
Тема 1: Введение в теорию баз данных. Группы операторов в SQL. Выбор данных
Тема 2: Типы объединений и соединений таблиц. Порядок выполнения запроса // ДЗ
Тема 3: Функции в SQL. Вложенные запросы и временные таблицы
Тема 4: Объекты базы данных. Оптимизация производительности запросов // ДЗ
Введение в Business Intelligence и визуальный анализ данных
В этом модуле мы познакомимся с BI, рассмотрим наиболее популярные BI-платформы, а также научимся визуализировать данные с помощью Tableau/Yandex Data Lense.
Тема 1: Введение в визуализацию данных и Business Intelligence
Тема 2: Основные типы источников данных в Tableau, типы соединений
Тема 3: Визуализация в Tableau. Виды диаграмм и основные сценарии их использования // ДЗ
Тема 4: Вычисляемые поля и функции в Tableau
Тема 5: Организация данных в Tableau
Тема 6: Введение в информационный дизайн
Тема 7: Проектирование дашборда с учетом User Experience // ДЗ
Введение в Python
В этом модуле мы познакомимся с синтаксисом и подключим библиотеки и визуализацию с помощью Python.
Тема 1: Введение в языки программирования. Знакомство с синтаксисом и основными понятиями Python
Тема 2: Основы Python. Структуры данных. Операторы, циклы
Тема 3: Библиотеки (Pandas/NumPy), модули и функции
Тема 4: Методы визуализации в Python // ДЗ
Тема 5: Работа с базами данных с помощью Python
Специальные методы и направления в дата-аналитике
В этом модуле мы рассмотрим продуктовую аналитику, BI-аналитику и дата-журналистику.
Тема 1: Продуктовая аналитика
Тема 2: BI-аналитика. Дата-журналистика и дата-сторителлинг
Тема 3: Дата-арт и дата-дизайн
Основы статистики
В этом модуле мы рассмотрим основные понятия статистики, типы данных, измерения и шкалы, меры центральной тенденции, гипотезы и A/B-тесты.
Тема 1: Основы статистики. Генеральная совокупность и выборка. Типы данных
Тема 2: Нормальное распределение. Стандартное отклонение. Доверительные интервалы
Тема 3: Статистические гипотезы. А/В-тесты // ДЗ
Предобработка данных, исследовательский и статистический методы анализа данных
В этом модуле мы рассмотрим исследовательский анализ данных, обработку выбросов, пропусков и дубликатов, корреляционный анализ и линейную регрессию с применением уже имеющихся навыков в Python.
Тема 1: Исследовательский анализ данных. Предобработка и очистка данных, работа с пропусками и дубликатами
Тема 2: Нормирование данных. Анализ временных рядов. Корреляционный анализ
Тема 3: Взаимосвязь данных. Линейная регрессия // ДЗ
Проектная работа
Заключительный месяц курса посвящен проектной работе. Свой проект — это то, что интересно писать слушателю. То, что можно создать на основе знаний, полученных на курсе. При этом не обязательно закончить его за месяц. В процессе написания по проекту можно получить консультации преподавателей.
Тема 1: Выбор темы и организация проектной работы
Тема 2: Консультация по проектам и домашним заданиям
Тема 3: Защита проектов
Также вы можете получить полную программу, чтобы убедиться, что обучение вам подходит
Проектная работа
Выпускной проект включает в себя все этапы от сбора требований до подготовки дашборда и строится на одном из трех датасетов на выбор, где каждый датасет -- набор данных из реальной жизни. В результате получается полный набор артефактов: требования заказчика к отчету, отчет, исполненный в виде интерактивного дашборда в Tableau, а также презентация с обзором набора данных, наблюдениями и рекомендациями, провалидированными экспертами.
Преподаватели
Эксперты-практики делятся опытом, разбирают кейсы студентов и дают развернутый фидбэк на домашние задания
Прошедшие
мероприятия
Возможность пройти вступительное тестирование повторно появится только через 3 дня
Результаты тестирования будут отправлены вам на email, указанный при регистрации.
Тест рассчитан на 30 минут, после начала тестирования отложить тестирование не получится!
Корпоративное обучение для ваших сотрудников
- Курсы OTUS верифицированы крупными игроками ИТ-рынка и предлагают инструменты и практики, актуальные на данный момент
- Студенты работают в группах, могут получить консультации не только преподавателей, но и профессионального сообщества
- OTUS проверяет знания студентов перед стартом обучения и после его завершения
- Простой и удобный личный кабинет компании, в котором можно видеть статистику по обучению сотрудников
- Сертификат нашего выпускника за 5 лет стал гарантом качества знаний в обществе
- OTUS создал в IT более 120 курсов по 7 направлениям, линейка которых расширяется по 40-50 курсов в год
Отзывы
Сертификат о прохождении курса
OTUS осуществляет лицензированную образовательную деятельность.
Вы получите сертификат о прохождении обучения, а также можете получить удостоверение о повышении квалификации.
После обучения:
-
Удостоверение о повышении квалификации: если вы успешно защитили выпускной проект и готовы предоставить копию документа о высшем или среднем профессиональном образовании
-
Доступ к учебным материалам курса
-
Ваш личный проект, который поможет проходить собеседования
Аналитик данных
Полная стоимость
Стоимость указана для оплаты физическими лицами
вычета до 13% стоимости обучения. Пройдите тестирование и менеджер вас проконсультирует
+7 499 938-92-02 бесплатно