Advanced
Онлайн
Обучение проходит онлайн: вебинары, общение с преподавателями и вашей группой в Telegram, сдача домашних работ и получение обратной связи от преподавателя.
Вебинары проводятся 2 раза в неделю по 2 ак. часа и сохраняются в записи в личном кабинете. Вы можете посмотреть их в любое удобное для вас время.
В ходе обучения вы будете выполнять домашние задания. Каждое из них посвящено одному из компонентов вашего выпускного проекта.
После выполнения всех домашних заданий вы получите готовый выпускной проект.
Возможность совмещать учебу с работой
Индивидуальная разработка итоговой проектной работы
Получите знания, которые помогут повысить вашу востребованность и доход
Многие студенты еще во время прохождения первой части программы находят или меняют работу, а к концу обучения могут претендовать на повышение в должности.
2 занятия по 2 ак.часа в неделю. Доступ к записям и материалам остается навсегда
Домашние задания с поддержкой и обратной связью наших преподавателей помогут освоить изучаемые технологии
Чат в Telegram для общения преподавателей и студентов
В этом модуле мы изучим ключевые аспекты лидерства в ML-командах и рассмотрим, как эффективно строить и управлять командой. Вы узнаете, как распределять роли, выстраивать коммуникацию внутри команды и между отделами компании. Мы также разберём разные стили лидерства, их влияние на производительность команды и методы разрешения конфликтов, которые помогут вам сохранять продуктивную рабочую атмосферу. Кроме того, обсудим, как сформировать стратегическое видение для ML-команды и мотивировать её на достижение целей компании
Тема 1: Позиция Team Lead
Тема 2: Структура и построение ML команды
Тема 3: Кросс-функциональное взаимодействие
Тема 4: Лидерство и коммуникации
Тема 5: Видение и стратегия
Тема 6: Мотивация команды и управление производительностью
Этот модуль посвящён инструментам и методам, которые помогут вам эффективно организовать и управлять ML-проектами. Мы разберем, как выстраивать работу с данными и оптимизировать рабочие процессы, используя современные технологии для сбора, хранения и обработки данных. Вы научитесь применять Agile-методологии в управлении ML-проектами, использовать таск-трекеры, такие как JIRA и Trello, и интегрировать MLOps для развертывания и мониторинга моделей. Также рассмотрим, как наладить контроль качества кода с помощью контроля версий и автоматизированного тестирования
Тема 1: Data&ML Pipelines. Как построить эффективную систему для работы с данными и моделями
Тема 2: Управление задачами (task management)
Тема 3: Инструменты и технологии: MLOps
Тема 4: Инструменты и технологии: коллаборация, MLFlow
Тема 5: Контроль качества кода
В этом модуле мы сосредоточимся на росте и развитии команды. Вы узнаете, как разрабатывать стратегии найма, интегрировать новых сотрудников в команду и создавать программы наставничества. Также мы разберём карьерные пути для различных ролей в ML-командах, что поможет вам поддерживать развитие сотрудников. Мы обсудим, как организовать постоянное обучение команды через семинары, курсы и конференции, и как внедрять эффективные циклы обратной связи
Тема 1: Рост команды и найм
Тема 2: Карьерные пути для ML специалистов
Тема 3: Развитие и обучение команды
Этот модуль посвящен вопросам этики, безопасности и соответствия требованиям регуляторов в области ML. Вы узнаете о ключевых этических проблемах и научитесь обеспечивать прозрачность и конфиденциальность моделей. Мы также рассмотрим, как защищать данные и модели от угроз и соблюдать требования регуляторов, таких как GDPR и HIPAA
Тема 1: Этика в машинном обучении
Тема 2: Безопасность в машинном обучении
Тема 3: Регуляторы: GDPR, HIPAA и другие страшные буквы
В этом модуле мы рассмотрим практические кейсы из различных компаний, которые помогут вам лучше понять, как функционируют ML-команды в различных условиях. Обсудим стратегии антикризисного управления и управления сложными проектами. В завершение модуля мы подготовим вас к собеседованию на позицию ML Team Lead
Тема 1: Построение системы аналитики и АБ-тестирования в компании
Тема 2: Кейсы и примеры
Тема 3: Работа с трудными проектами и антикризисное управление
Тема 4: Собеседование на позицию ML Team lead
Представьте, что вас пригласили на работу в качестве ML Team Lead в небольшую компанию для организации работы ML команды и решения конкретной бизнес задачи. Ваша задача — создать и управлять командой ML для разработки модели для этого продукта. Проект потребует от команды выполнения полного процесса — от сбора данных до развертывания модели
Тема 1: Выбор темы и организация проектной работы
Тема 2: Консультация по проектам и домашним заданиям
Тема 3: Защита проектных работ и подведение итогов курса
Каждый семестр завершается финальным проектом, который предстоит защитить перед преподавателями и командой. Вам будет, что обсудить на собеседовании!
В качестве проектной работы вы разработаете комплексный план проекта и презентацию для стейкхолдеров по решению конкретной бизнес задачи.
Вы можете выбрать одну из предложенных преподавателем тем или реализовать свою идею.
ŌURA
Data Science Manager, Staff Data Scientist
Руководит европейской Data Science командой в компании ŌURA, выпускающей умные кольца. Больше 10 лет профессионального и преподавательского опыта. Работает в HealthTech уже 5 лет, до этого занимался машинным обучением в gamedev компаниях. Имеет как прикладной технический, так и управленческий опыт, в том числе на позиции Head of Data Science в стартапе WeatherWell. Консультирует различные стартапы по внедрению машинного обучения и построению ML команд. Преподавал в ЦМФ МГУ, ФНК ВШЭ, Aalto University. Руководил программами и читал лекции на различных онлайн курсах и платформах, таких как OTUS, ODS.ai и др. Образование: MSc Computer Science Aalto University, ДПО ФКН ВШЭ, ЦМФ МГУ, Эконом-мат РЭУ им. Плеханова
Эксперты-практики делятся опытом, разбирают кейсы студентов и дают развернутый фидбэк на домашние задания
OTUS осуществляет лицензированную образовательную деятельность. В конце обучения вы получите сертификат OTUS о прохождении курса и удостоверение о повышении квалификации.