Machine Learning. Basic | OTUS

Курсы

Программирование
Выбор профессии в IT
-99%
Разработчик на Spring Framework Python Developer. Basic Специализация Python Developer Python Developer. Professional Golang Developer. Professional Scala-разработчик Специализация iOS Angular Developer JavaScript Developer. Professional Java Developer. Professional Microservice Architecture Highload Architect Node.js Developer Kotlin Backend Developer. Professional Java Developer. Basic HTML/CSS Специализация C++ Developer C++ Developer. Professional PHP Developer. Professional Agile Project Manager PostgreSQL для администраторов баз данных и разработчиков MS SQL Server Developer Unreal Engine Game Developer. Professional Web-разработчик на Python Cloud Solution Architecture Flutter Mobile Developer PHP Developer. Basic Специализация PHP Developer Rust Developer Буткемп Java Unity VR/AR Developer
Специализации Курсы в разработке Подготовительные курсы Подписка
+7 499 938-92-02
Machine Learning. Basic

Machine Learning. Базовый уровень

С нуля до уверенных Junior компетенций в Машинном обучении. Персональный ментор. Практика на реальных данных.

Длительность обучения:

6 месяцев

4 ак. часа в нед.

Формат:

Online

Начало занятий:

29 ноября

Дни занятий:

Вт 20:00, Пт 20:00

Что даст вам этот курс

Вы научитесь решать задачи из реальных рабочих процессов, которые чаще всего в Data Science поручают начинающим специалистам. К концу курса вы соберете портфолио работ, пройдете подготовку к собеседованиям и карьерную консультацию.

Курс даст вам необходимый фундамент:

  • Python. Пройдете основы программирования и научитесь использовать этот наиболее актуальный язык в задачах Machine Learning.
  • Математика. Освоите ключевые разделы, чтобы понимать теоретические основы и принципы работы алгоритмов.
  • Классические модели Machine Learning. Соберете свои наборы данных и выполните полный пайплайн работ со своими первыми моделями.

Творческая атмосфера:

Во время обучения вы погрузитесь в условия, близкие к реальным рабочим процессам. Вам придется справляться с «грязными» данными, просчитывать свои действия наперед, экспериментировать с решениями и готовить модели к проду.

Обстановка на занятиях располагает быть любопытным, активно дискутировать и не бояться ошибок.

Персональный ментор:

  • Онлайн-сессии на 40 минут каждую неделю;
  • В начале обучения за вами закрепляется ментор. Как и преподаватели, менторы — эксперты, работающие в Data Science;
  • Раз в неделю вы делаете домашнее задание, выкладываете на гитхаб и договариваетесь с ментором о созвоне;
  • Ментор заранее знакомится с вашим кодом, поэтому к встрече он уже знает, на что обратить внимание. Вы тоже можете заготовить вопросы;
  • На сессии ментор прокомментирует ваше решение. При необходимости можно сразу перейти в среду разработки, внести правки в код и тут же посмотреть результат.

После обучения вы сможете:

  • Претендовать на должности, где требуются junior-компетенции
  • Решать реальные бизнес-задачи при помощи методов машинного обучения
  • Работать с Python-библиотеками для Machine Learning
  • Справляться с нестандартными ситуациями за счет глубокого теоретического понимания работы алгоритмов и моделей
  • Ориентироваться в различных направлениях Data Science и подбирать подходящие под задачу инструменты.

Предлагаем ознакомиться с Картой курсов направления Data Science в OTUS , чтобы выстроить собственную образовательную траекторию.

Преподаватели

Мария Тихонова
Senior Data Scientist SberDevices, преподаватель ВШЭ
Андрей Канашов
Senior Data Scientist в OZON
Светлана Медведева
Глеб Карпов
Skoltech Computational Intelligence Laboratory
Максим Бекетов
Султан Хаджидурсуноглы
Data Scientist in Sunrise Development
Евгений Романов
Data Scientist
Евгений Ревняков
Александр Миленькин
Сурен Хоренян
МТС ИИ
Дмитрий Сергеев
Head of R&D в WeatherWell
Работает специалистом по анализу данных в команде AGI NLP в SberDevices. Занимается нейросетевыми языковыми моделями и их применением в реальных задачах. Считает, что работа в области Data Science дает уникальную возможность заниматься безумно крутыми вещами on the edge of science, которые меняют мир здесь и сейчас.

Преподает в Высшей Школе Экономики дисциплины по анализу данных, машинному обучению и data science.

Мария закончила механико-математический факультет МГУ и школу анализа данных Яндекса. В настоящий момент Мария обучается в аспирантуре ВШЭ на факультете компьютерных наук. Среди ее научных интересов такие области data science, как natural language processing и тематическое моделирование.

Руководитель программы
Работает в лидирующем российском маркетплейсе OZON. Занимался задачами с использованием как классического Machine Learning, так и Deep Learning алгоритмов с использованием нейронных сетей в задачах NLP и CV, а также проведением различных аналитических исследований:

- Задачи NLP (Topic Modeling, NER) и CV (face detection, instance segmentation, semantic segmentation, age/gender classification) для анализа социальных сетей
- Кластерный анализ целевых аудитории (clustering)
- Прогнозирование бизнес-метрик (classical ML)
- Аудиторное профилирование и персонализация рекламы

Самостоятельно занимался изучением Machine Learning. Знает, что нужно для освоения новой профессии и какие при этом возникают вопросы.

Преподаватель
Закончила МФТИ (бакалавриат и магистратура) и Сколтех (магистратура). С 2018 года преподает студентам МФТИ вычислительную математику (численные методы), сейчас ведет лабораторные занятия по питону и анализу данных на питоне.

Работала в консалтинге (разработка технологических решений) в SAS Institute. Занималась разработкой решений на основе SAS Event Stream Processing, работой с данными (DI, SAS Base, SQL) и автоматизированным тестированием (python+selenium), а также временными рядами.
Стажировалась в Huawei в группе компьютерного зрения.

В настоящее время работает аналитиком данных (разработка MVP для консалтинга). Один из проектов был связан с моделированием путешествия клиента. Сейчас занимается гомоморфным шифрованием.

Преподаватель
Руководитель курса OTUS Математика для Data Science

Окончил МФТИ и Сколтех в 2018 году.

В данный момент работает исследователем в Skoltech Computational Intelligence Laboratory: пишет научные статьи в составе международной коллаборации, занимается коммерческими проектами по темам машинного обучения и вычислительной линейной алгебры.

Имеет большой опыт в преподавании: почти 10 занимался организацией добровольной инициативы - многопрофильной летней школы-лагеря для школьников старших классов в Тульской области. На данный момент преподает в университете: ведет курс в ВШЭ по теории вероятностей и статистике на английском языке.
Профессиональные интересы: оптимизация, линейная алгебра, статистика, uncertainty quantification, обучение с подкреплением, регрессионный анализ, планирование эксперимента.
Нравится учиться, преподавать, доносить сложные вещи понятным языком, взаимодействовать с людьми, размышлять о природе вещей, явлений и концепций.

Преподаватель
Аспирант ФКН ВШЭ

Выпускник ФОПФ МФТИ и Сколтеха, в машинное обучение пришел из теоретической физики. Опыт работы в анализе данных (компания App In The Air) и Python-разработки (Archeads Inc.)

Многолетний опыт преподавания: линейной алгебры, статистики и теории вероятностей, разработки и анализа данных на Python.

Преподаватель
Занимаюсь с log anomaly detection для выявления отклонений от нормали по частотному признаку и контенту в логах.

Научные проекты:
- Сравнительный анализ энергопотребления в Казахстане по разным регионам и прогнозирование с помощью метода временных рядов машинного обучения.
Проекты:
- Оптимизация нефтегазосборных трубопроводов скважин с использованием методов машинного обучения
- Платформа для кофейни для анализа клиентов
- Распознавание гаджетов на онлайн экзамене

Место учебы: Astana IT University, Big Data Analysis

Преподаватель
Занимаюсь анализом данных и машинном обучением с 2018 года. Закончил Финансовый Университет при Правительстве РФ и и имею образование в области риск-менеджмента.

Работал в департаментах рисков, комплаенса крупных российских банков, а также айти-консалтинге. В настоящий момент занимаюсь построением моделей для клиентского сервиса в Газпромбанке.

Компании: QIWI, Альфа-банк, МТС-Банк, PricewaterhouseCoopers.

Интересы: работающие модели, которые приносят безнесу деньги :)

Преподаватель
Начинал в школе с паяльником в руках. Потом был ZX Spectrum. В университет пошел на техническую специальность. В механике много интересного, но в 2008 интерес к ИТ взял верх: компьютерные сети -> Delphi -> PHP -> Python.
Были эксперименты с другими языками, но хочется писать именно на нем. Участвовал в проектах по автоматизации бизнес-процессов при помощи нейросетей (сервис заказа такси «Максим»), разработке информационных систем в медицине. Работал с GIS-системами и процессингом изображений при помощи Python.
В преподавании позиция: «Если кто-то не может объяснить сложное простыми словами, — значит он в этом еще не очень хорошо разбирается».

Образование: Курганский университет, кафедра "Безопасность информационных и автоматизированных систем", к.т.н.
В 2002 окончил Курганский государственный университет по специальности "Многоцелевые гусеничные и колесные машины".
В 2005 защитил диссертацию по бесступенчатым передачам. С тех пор официально трудоустроен в университете (КГУ).

Преподаватель
Старший менеджер по работе с большими данными в X5 Retail Group.
Ранее старший аналитик в Асна, data scientist в Gero и биоинформатик в Insilico Medicine.

Около 6 лет в IT. Выпускник МФТИ.

Преподаватель
Долгое время занимал должность Backend-разработчика на Python 3.6 в компании AdCombo. Стек используемых технологией включает Flask, SQLAlchemy, PostgreSQL, Redis, Docker и многое другое.

Начинал свою карьеру системным администратором в «АНТИвор», занимался оптимизацией рабочих процессов, сбором статистики и визуализацией аналитики. Затем перешел на должность Full Stack-программиста на Python и разрабатывал инструменты внутреннего пользования и web-интерфейсы для продукции компании.

Преподаватель
Соавтор курсов Machine Learning уровня Basic, Professional и Advanced

Практикует машинное обучение и анализ данных с 2012 года. В настоящий момент работает Head of R&D в компании WeatherWell. Имеет опыт практического применения машинного обучения в геймдеве, банковской сфере и Health Tech.

Преподавал машинное обучение и анализ данных в Центре Математических Финансов МГУ, был приглашенным лектором на Факультете Компьютерных Наук НИУ ВШЭ и различных летних школах.

Образование: Эконом-мат РЭУ им. Плеханова, ЦМФ МГУ, ДПО ФКН ВШЭ «Практический анализ данных и машинное обучение», MSc Computer Science Aalto University

Стек/интересы: Python, Machine Learning, Time Series, Anomaly Detection, Open Data, ML for social good

Мария
Тихонова
Андрей
Канашов
Светлана
Медведева
Глеб
Карпов
Максим
Бекетов
Султан
Хаджидурсуноглы
Евгений
Романов
Евгений
Ревняков
Александр
Миленькин
Сурен
Хоренян
Дмитрий
Сергеев

Преподаватели

Мария Тихонова
Senior Data Scientist SberDevices, преподаватель ВШЭ
Работает специалистом по анализу данных в команде AGI NLP в SberDevices. Занимается нейросетевыми языковыми моделями и их применением в реальных задачах. Считает, что работа в области Data Science дает уникальную возможность заниматься безумно крутыми вещами on the edge of science, которые меняют мир здесь и сейчас.

Преподает в Высшей Школе Экономики дисциплины по анализу данных, машинному обучению и data science.

Мария закончила механико-математический факультет МГУ и школу анализа данных Яндекса. В настоящий момент Мария обучается в аспирантуре ВШЭ на факультете компьютерных наук. Среди ее научных интересов такие области data science, как natural language processing и тематическое моделирование.

Руководитель программы
Андрей Канашов
Senior Data Scientist в OZON
Работает в лидирующем российском маркетплейсе OZON. Занимался задачами с использованием как классического Machine Learning, так и Deep Learning алгоритмов с использованием нейронных сетей в задачах NLP и CV, а также проведением различных аналитических исследований:

- Задачи NLP (Topic Modeling, NER) и CV (face detection, instance segmentation, semantic segmentation, age/gender classification) для анализа социальных сетей
- Кластерный анализ целевых аудитории (clustering)
- Прогнозирование бизнес-метрик (classical ML)
- Аудиторное профилирование и персонализация рекламы

Самостоятельно занимался изучением Machine Learning. Знает, что нужно для освоения новой профессии и какие при этом возникают вопросы.

Преподаватель
Светлана Медведева
Закончила МФТИ (бакалавриат и магистратура) и Сколтех (магистратура). С 2018 года преподает студентам МФТИ вычислительную математику (численные методы), сейчас ведет лабораторные занятия по питону и анализу данных на питоне.

Работала в консалтинге (разработка технологических решений) в SAS Institute. Занималась разработкой решений на основе SAS Event Stream Processing, работой с данными (DI, SAS Base, SQL) и автоматизированным тестированием (python+selenium), а также временными рядами.
Стажировалась в Huawei в группе компьютерного зрения.

В настоящее время работает аналитиком данных (разработка MVP для консалтинга). Один из проектов был связан с моделированием путешествия клиента. Сейчас занимается гомоморфным шифрованием.

Преподаватель
Глеб Карпов
Skoltech Computational Intelligence Laboratory
Руководитель курса OTUS Математика для Data Science

Окончил МФТИ и Сколтех в 2018 году.

В данный момент работает исследователем в Skoltech Computational Intelligence Laboratory: пишет научные статьи в составе международной коллаборации, занимается коммерческими проектами по темам машинного обучения и вычислительной линейной алгебры.

Имеет большой опыт в преподавании: почти 10 занимался организацией добровольной инициативы - многопрофильной летней школы-лагеря для школьников старших классов в Тульской области. На данный момент преподает в университете: ведет курс в ВШЭ по теории вероятностей и статистике на английском языке.
Профессиональные интересы: оптимизация, линейная алгебра, статистика, uncertainty quantification, обучение с подкреплением, регрессионный анализ, планирование эксперимента.
Нравится учиться, преподавать, доносить сложные вещи понятным языком, взаимодействовать с людьми, размышлять о природе вещей, явлений и концепций.

Преподаватель
Максим Бекетов
Аспирант ФКН ВШЭ

Выпускник ФОПФ МФТИ и Сколтеха, в машинное обучение пришел из теоретической физики. Опыт работы в анализе данных (компания App In The Air) и Python-разработки (Archeads Inc.)

Многолетний опыт преподавания: линейной алгебры, статистики и теории вероятностей, разработки и анализа данных на Python.

Преподаватель
Султан Хаджидурсуноглы
Data Scientist in Sunrise Development
Занимаюсь с log anomaly detection для выявления отклонений от нормали по частотному признаку и контенту в логах.

Научные проекты:
- Сравнительный анализ энергопотребления в Казахстане по разным регионам и прогнозирование с помощью метода временных рядов машинного обучения.
Проекты:
- Оптимизация нефтегазосборных трубопроводов скважин с использованием методов машинного обучения
- Платформа для кофейни для анализа клиентов
- Распознавание гаджетов на онлайн экзамене

Место учебы: Astana IT University, Big Data Analysis

Преподаватель
Евгений Романов
Data Scientist
Занимаюсь анализом данных и машинном обучением с 2018 года. Закончил Финансовый Университет при Правительстве РФ и и имею образование в области риск-менеджмента.

Работал в департаментах рисков, комплаенса крупных российских банков, а также айти-консалтинге. В настоящий момент занимаюсь построением моделей для клиентского сервиса в Газпромбанке.

Компании: QIWI, Альфа-банк, МТС-Банк, PricewaterhouseCoopers.

Интересы: работающие модели, которые приносят безнесу деньги :)

Преподаватель
Евгений Ревняков
Начинал в школе с паяльником в руках. Потом был ZX Spectrum. В университет пошел на техническую специальность. В механике много интересного, но в 2008 интерес к ИТ взял верх: компьютерные сети -> Delphi -> PHP -> Python.
Были эксперименты с другими языками, но хочется писать именно на нем. Участвовал в проектах по автоматизации бизнес-процессов при помощи нейросетей (сервис заказа такси «Максим»), разработке информационных систем в медицине. Работал с GIS-системами и процессингом изображений при помощи Python.
В преподавании позиция: «Если кто-то не может объяснить сложное простыми словами, — значит он в этом еще не очень хорошо разбирается».

Образование: Курганский университет, кафедра "Безопасность информационных и автоматизированных систем", к.т.н.
В 2002 окончил Курганский государственный университет по специальности "Многоцелевые гусеничные и колесные машины".
В 2005 защитил диссертацию по бесступенчатым передачам. С тех пор официально трудоустроен в университете (КГУ).

Преподаватель
Александр Миленькин
Старший менеджер по работе с большими данными в X5 Retail Group.
Ранее старший аналитик в Асна, data scientist в Gero и биоинформатик в Insilico Medicine.

Около 6 лет в IT. Выпускник МФТИ.

Преподаватель
Сурен Хоренян
МТС ИИ
Долгое время занимал должность Backend-разработчика на Python 3.6 в компании AdCombo. Стек используемых технологией включает Flask, SQLAlchemy, PostgreSQL, Redis, Docker и многое другое.

Начинал свою карьеру системным администратором в «АНТИвор», занимался оптимизацией рабочих процессов, сбором статистики и визуализацией аналитики. Затем перешел на должность Full Stack-программиста на Python и разрабатывал инструменты внутреннего пользования и web-интерфейсы для продукции компании.

Преподаватель
Дмитрий Сергеев
Head of R&D в WeatherWell
Соавтор курсов Machine Learning уровня Basic, Professional и Advanced

Практикует машинное обучение и анализ данных с 2012 года. В настоящий момент работает Head of R&D в компании WeatherWell. Имеет опыт практического применения машинного обучения в геймдеве, банковской сфере и Health Tech.

Преподавал машинное обучение и анализ данных в Центре Математических Финансов МГУ, был приглашенным лектором на Факультете Компьютерных Наук НИУ ВШЭ и различных летних школах.

Образование: Эконом-мат РЭУ им. Плеханова, ЦМФ МГУ, ДПО ФКН ВШЭ «Практический анализ данных и машинное обучение», MSc Computer Science Aalto University

Стек/интересы: Python, Machine Learning, Time Series, Anomaly Detection, Open Data, ML for social good

Необходимые знания

  • Знать математику на школьном уровне;
  • Знакомство с любым языком программирования - желательно, но не обязательно.
Корпоративное обучение для ваших сотрудников
>
Программа обучения
В процессе обучения вы получите комплексные знания и навыки.
Тема 1. Знакомство. Настройка окружения для работы
Тема 2. Базовые типы и структуры данных. Управление потоком
Тема 3. Работа с функциями и данными
Тема 4. Git, shell
C 16 декабря
Тема 5. Основы ООП
Тема 6. Продвинутый ООП, исключения
Тема 7. Продвинутый ООП, продолжение
Тема 8. Модули и импорты
Тема 9. Тесты
Тема 10. Знакомство со встроенными модулями
Тема 11. Файлы и сеть
C 20 января
Тема 12. Основы NumPy
Тема 13. Основы Pandas
Тема 14. Визуализация данных
C 31 января
Тема 15. Матрицы. Основные понятия и операции
Тема 16. Практика. Матрицы
Тема 17. Дифференцирование и оптимизация функций
Тема 18. Практика. Дифференцирование и оптимизация функций
Тема 19. Алгоритмы и вычислительная сложность
Тема 20. МНК и ММП
Тема 21. Практика. МНК и ММП
Тема 22. Случайные величины и их моделирование
Тема 23. Практика. Случайные величины и их моделирование
Тема 24. Исследование зависимостей: номинальные, порядковые и количественные величины
Тема 25. Практика. Исследование зависимостей: номинальные, порядковые и количественные величины
Тема 26. A/Б-тестирование
C 24 марта
Тема 27. Введение в машинное обучение
Тема 28. Exploratory Data Analysis and Preprocessing
Тема 29. Задача регрессии. Линейная регрессия
Тема 30. Задача классификации. Метод ближайших соседей
Тема 31. Логистическая регрессия
Тема 32. Деревья решений
Тема 33. Ансамбли моделей
Тема 34. Feature engineering & advanced preprocessing
C 21 апреля
Тема 35. Выбор темы проекта
Тема 36. Консультация в формате предзащиты
Тема 37. Защита проекта
Скачать подробную программу
Выпускной проект
Мы стремимся, чтобы студенты самостоятельно выбирали темы для выпускных проектов, а не работали по шаблонным заготовкам. В результате все работы получаются уникальными исследовательскими проектами по машинному обучению, о которых с большим интересом можно рассказывать во время собеседований или даже публиковать статьи. Примеры проектов, которые студенты делали на курсе Machine Learning. Professional :
- Как сделать тематическое моделирование форума быстро или что беспокоит людей с целиакией
- Анализируем шедевры живописи с помощью классического ML

Процесс обучения

Образовательный процесс происходит ONLINE в формате вебинаров (язык преподавания — русский). В рамках курса слушателям предлагаются к выполнению домашние задания, которые позволяют применить на практике знания, полученные на занятиях. По каждому домашнему заданию преподаватель дает развернутый фидбек. В течение всего учебного процесса преподаватель находится в едином коммуникационном пространстве с группой, т. е. при обучении слушатель может задавать преподавателю уточняющие вопросы по учебным материалам.
Получить консультацию
Наш специалист свяжется с вами в ближайшее время. Если у вас возникли трудности в выборе курса или проблемы технического плана, то мы с радостью поможем вам.
Спасибо!
Мы получили Вашу заявку, в ближайшее время с Вами свяжется наш менеджер.

После обучения вы


  • заберете с собой материалы по всем занятиям (презентации, записи вебинаров, примеры практических задач);

  • получите сертификат на русском о прохождении курса;

  • научитесь использовать методы машинного обучения для решения реальных бизнес-задач;

  • создадите своё портфолио проектов, которое поможет при прохождении собеседований;

  • получите приглашение пройти собеседование в компаниях-партнерах OTUS (в случае успешного обучения на курсе).

Дата выдачи сертификата: 10 июля 2023 года
Ваш сертификат

онлайн-образование

Сертификат №0001

Константин Константинопольский

Успешно закончил курс «Machine Learning. Basic»
Выполнено практических заданий: 16 из 16

Общество с ограниченной ответственностью “Отус Онлайн-Образование”

Город:
Москва

Директор департамента образования
ООО “Отус Онлайн-Образование”
Анна Фирсова

Лицензия на осуществление образовательной деятельности
№ 039825 от 28 декабря 2018 года.

онлайн-образование

Сертификат №0001

Константин Константинопольский

Успешно закончил курс «Machine Learning. Basic»
Выполнено практических заданий: 16 из 16

Общество с ограниченной ответственностью “Отус Онлайн-Образование”

Город:
Москва

Директор департамента образования
ООО “Отус Онлайн-Образование”
Анна Фирсова

Лицензия на осуществление образовательной деятельности
№ 039825 от 28 декабря 2018 года.
Прошедшие открытые вебинары
Открытый вебинар — это настоящее занятие в режиме он-лайн с преподавателем курса, которое позволяет посмотреть, как проходит процесс обучения. В ходе занятия слушатели имеют возможность задать вопросы и получить знания по реальным практическим кейсам.
Интенсив «Data Science - это проще, чем кажется». День 2
Мария Тихонова
День открытых дверей
13 мая 2021 года в 20:00

Партнеры ждут выпускников этого курса

Стоимость обучения
Cтоимость указана для оплаты физическими лицами
65 000 ₽
Продолжительность
6 месяцев
Начало занятий
29 ноября