Курс про принципы машинного обучения в области компьютерного зрения

Курсы

Программирование
Microservice Architecture
-5%
React.js Developer
-4%
C++ Developer. Professional
-5%
Scala-разработчик
-8%
Backend-разработчик на PHP
-9%
Алгоритмы и структуры данных
-9%
Python Developer. Basic
-12%
Golang Developer. Professional
-5%
HTML/CSS
-11%
C# ASP.NET Core разработчик
-5%
Kotlin Backend Developer
-8%
iOS Developer. Professional
-8%
Java Developer. Professional Web-разработчик на Python MS SQL Server Developer Android Developer. Basic Разработчик программных роботов (RPA) на базе UiPath и PIX Highload Architect Reverse-Engineering. Professional Vue.js разработчик Node.js Developer Интенсив «Оптимизация в Java» Супер-практикум по использованию и настройке GIT Symfony Framework Java Developer. Basic Unity Game Developer. Professional Супер-интенсив Azure
Инфраструктура
Microservice Architecture
-5%
Экспресс-курс «IaC Ansible»
-10%
Administrator Linux.Basic
-10%
Мониторинг и логирование: Zabbix, Prometheus, ELK
-10%
Экспресс-курс «CI/CD или Непрерывная поставка с Docker и Kubernetes»
-30%
Administrator Linux. Professional
-6%
Экcпресс-курс «ELK»
-10%
Экспресс-курс по управлению миграциями (DBVC)
-10%
Базы данных Network engineer Разработчик программных роботов (RPA) на базе UiPath и PIX Highload Architect Разработчик голосовых ассистентов и чат-ботов VOIP инженер Супер-практикум по работе с протоколом BGP Супер - интенсив по паттернам проектирования Супер - интенсив по Kubernetes Супер-интенсив "Tarantool"
Специализации Курсы в разработке Подготовительные курсы
+7 499 938-92-02
Специальная цена
Специальная цена

Компьютерное зрение

Длительность обучения:

4 месяца

4 ак. часа в нед.

Формат:

Online

Начало занятий:

29 апреля

Дни занятий:

Чт 20:00, Вт 20:00

Что даст вам этот курс

Вы освоите принципы машинного обучения в области компьютерного зрения и сможете решать индустриальные задачи, используя открытые датасеты. По ходу курса вы обучите нейросети для решения задач:

 


    • классификации и сегментации изображений

    • детекции объектов на изображениях

    • отслеживания объектов на видео

    • обработки трехмерных сцен

    • порождения изображений и атаки на обученные модели нейронных сетей

 

Также вы научитесь пользоваться основными фреймворками для создания нейросетей: PyTorch, TensorFlow и Keras. Карта курсов направления Data Science в OTUS Для кого этот курс? Для специалистов в сфере Machine Learning, которые

 


    • Хотят специализироваться на Компьютерном зрении

    • Уже используют практики Deep Learning и хотят расширить и систематизировать знания

 

Курс позволит переключиться с классических задач машинного обучения, таких как кредитный скоринг, оптимизация CTR, детекция фрода и т.д, и попасть в развивающуюся область Data Science, где сейчас происходит все самое интересное и открываются новые карьерные горизонты. Обучение даст вам необходимые компетенции, чтобы претендовать на специальности, требующие профессиональных навыков разработки систем компьютерного зрения. В разных компаниях специальности называются по-разному, самые распространенные варианты: Deep learning engineer, Computer Vision Engineer, AI Research Engineer [Computer Vision, Machine Learning], программист-исследователь, Deep Learning/Computer Vision. Чем курс отличается от других?

 


Подготовка к решению боевых задач: как запустить нейросеть в облаке и адаптировать модель под разные платформы

Углубленные знания и современные подходы к технологиям Computer vision

Завершенная проектная работа, которую можно добавить в портфолио

Веселые примеры, фонтан идей и вселенные киберпанка на кончиках пальцев — 4 месяца пролетят на одном дыхании!

 

Во время курса вы:

 


    • Будете работать с открытыми датасетами для различных задач Computer Vision

    • Разберетесь в принципах работы и вариантах сверточных и пулинг-слоев, в том числе, специфических для задач детекции и сегментации объектов.

    • Научитесь применять механизм внимания в сверточных сетях.

    • Узнаете, какие идеи лежат в основе современных сверточных сетей (MobileNet, ResNet, EfficientNet, etc.)

    • Разберетесь в DL-подходах к детекции объектов - изучите семейство R-CNN, реалтайм-детекторы: YOLO, SSD. А также реализуете детектор объектов самостоятельно.

    • Научитесь решать задачу Deep Metric Learning с помощью сиамских сетей. Узнаете, что такое triplet loss, angular loss.

    • Получите опыт в решении задачи сегментации изображений: U-Net, DeepLab.

    • Научитесь применять fine tuning, transfer learning и собирать собственные датасеты для задач object detection и Image segmentation, metric learning.

    • Будете работать с генеративными состязательными сетями. Поймете, как можно использовать GANs для состязательных атак и как реализовать super resolution GANs.

    • Научитесь запускать модели на сервере (tensorflow serving, TFX). Познакомитесь с фреймворками для оптимизации нейросетей для инференса на мобильных/embedded-устройствах: Tensorflow Lite, TensorRT.

    • Изучите архитектуры для определения Facial Landmarks: Cascade shape regression, Deep Alignment Network, Stacked Hourglass Network
Компьютерное зрение в спортивной аналитике, 21 апреля в 20:00
- Рассмотрим задачи, которые ставит бизнес в сфере спортивной видеоаналатики.
- Узнаем об основных подходах и моделях для решения подобных задача.
- Поговорим о детекции и трекинге игроков, реконструкции геометрии сцены, а также о распознавании активности игроков на видео.
Ведет
Антон
Витвицкий
Предыдущий открытый вебинар

Преподаватели

Артур Кадурин
Chief AI Officer Insilico Medicine
Антон Витвицкий
BOOST INC., Head of Computer Vision
Артем Васильев
Ведущий Инженер Разработки ПАО Сбербанк
Дмитрий Хизбуллин
В Mail.Ru Group был первым сотрудником в группе по анализу данных департамента рекламных технологий. После того, как группа выросла в отдел, возглавил группу сегментирования аудитории. Руководил и участвовал в проектах, связанных с анализом пользовательского поведения в рекламе, соцсетях, играх и т. д.

С 2016 года применяет методы глубокого обучения для научных исследований в области медицинской химии совместно с командой Insilico Medicine, где после успешного проекта занял должность директора по AI. В конце 2017 г. возглавил дочернюю компанию Insilico Taiwan в качестве исполнительного директора.

В 2008 году получил специальность математика и системного программиста в Кубанском Государственном Университете на Факультете Компьютерных Наук и Прикладной Математики, с 2013 года занимается машинным обучением.

Соавтор книги Глубокое обучение
Соавтор многочисленных научных публикаций: Google Scholar

Эксперт по компьютерному зрению и глубокому обучению, дипломированный инженер-программист и кандидат физ-мат наук.

С 2012 по 2017 занимался распознаванием лиц в компании WalletOne, чьи решения поставлялись для бизнеса в странах Южной Африки и Европы. Участвовал в стартапе Mirror-AI, где руководил командой компьютерного зрения. В 2017 стартап прошел Y-combinator и получили инвестиции для создания приложения в котором пользователь может реконструировать свой аватар по селфи. В 2019 участвовал в британском стартапе Kazendi Ltd., в проекте HoloPortation. Цель проекта - реконструкция 3D-аватаров для очков дополненной реальности HoloLens. C 2020 руководит командой компьютерного зрения в американском стартапе Boost Inc., который занимается видеоаналитикой в баскетболе для NCAA.

Руководитель программы
Занимается разработкой систем анализа поведения и действий. Работал над проектами по дистанционному зондированию и анализу данных с метеозондов, спутников и других БПЛА.
Научные интересы в области распознавания поз и действий человека и стеганографии с применением нейронных сетей

Преподаватель
Разработчик и исследователь с 10+ лет опыта работы в России, Германии и Эстонии, специализирующийся на глубоком обучении, компьютерном зрении и беспилотных автомобилях. В данный момент Дмитрий является тим-лидом в исследовательском центре Huawei и работает над зрением беспилотных автомобилей и распределенной тренировкой нейронных сетей.

Преподаватель
Артур
Кадурин
Антон
Витвицкий
Артем
Васильев
Дмитрий
Хизбуллин

Преподаватели

Артур Кадурин
Chief AI Officer Insilico Medicine
В Mail.Ru Group был первым сотрудником в группе по анализу данных департамента рекламных технологий. После того, как группа выросла в отдел, возглавил группу сегментирования аудитории. Руководил и участвовал в проектах, связанных с анализом пользовательского поведения в рекламе, соцсетях, играх и т. д.

С 2016 года применяет методы глубокого обучения для научных исследований в области медицинской химии совместно с командой Insilico Medicine, где после успешного проекта занял должность директора по AI. В конце 2017 г. возглавил дочернюю компанию Insilico Taiwan в качестве исполнительного директора.

В 2008 году получил специальность математика и системного программиста в Кубанском Государственном Университете на Факультете Компьютерных Наук и Прикладной Математики, с 2013 года занимается машинным обучением.

Соавтор книги Глубокое обучение
Соавтор многочисленных научных публикаций: Google Scholar

Антон Витвицкий
BOOST INC., Head of Computer Vision
Эксперт по компьютерному зрению и глубокому обучению, дипломированный инженер-программист и кандидат физ-мат наук.

С 2012 по 2017 занимался распознаванием лиц в компании WalletOne, чьи решения поставлялись для бизнеса в странах Южной Африки и Европы. Участвовал в стартапе Mirror-AI, где руководил командой компьютерного зрения. В 2017 стартап прошел Y-combinator и получили инвестиции для создания приложения в котором пользователь может реконструировать свой аватар по селфи. В 2019 участвовал в британском стартапе Kazendi Ltd., в проекте HoloPortation. Цель проекта - реконструкция 3D-аватаров для очков дополненной реальности HoloLens. C 2020 руководит командой компьютерного зрения в американском стартапе Boost Inc., который занимается видеоаналитикой в баскетболе для NCAA.

Руководитель программы
Артем Васильев
Ведущий Инженер Разработки ПАО Сбербанк
Занимается разработкой систем анализа поведения и действий. Работал над проектами по дистанционному зондированию и анализу данных с метеозондов, спутников и других БПЛА.
Научные интересы в области распознавания поз и действий человека и стеганографии с применением нейронных сетей

Преподаватель
Дмитрий Хизбуллин
Разработчик и исследователь с 10+ лет опыта работы в России, Германии и Эстонии, специализирующийся на глубоком обучении, компьютерном зрении и беспилотных автомобилях. В данный момент Дмитрий является тим-лидом в исследовательском центре Huawei и работает над зрением беспилотных автомобилей и распределенной тренировкой нейронных сетей.

Преподаватель

Отзывы

2
Татьяна
Воронич
Хотелось найти курс и обширный, и узконаправленный Computer Vision. И в общем это получилось.
Цель была обновить (вспомнить) и углубить знания в этой области, узнать, что нового и важного, с точки зрения практикующих специалистов появилось на данный момент.
На курсе приятная обстановка. Сам курс насыщен практикой, настоящее глубокое погружение в мир компьютерного зрения. А команда преподавателей, состоящая из специалистов и профессионалов, каждый в своём направлении, делает этот курс особенно сильным и уникальным.
Обучение даёт мне сделать новый шаг в саморазвитии в направлении нейронные сети. Попробовать себя в новых задачах, более сложных и прикладных.
В карьере пока без изменений. Но появился шанс попробовать новые проекты, используя более продвинутые инструменты, и, конечно, много новых идей.
Читать целиком
Станислав
Кусков
Хотелось бы сказать огромное спасибо преодавателям курса за их профессионализм и поддержку!
После окончания курса по C++ на платформе Otus увидел тут же новый курс по CV. Решил попробовать, вед курсом по C++ остался доволен!
Курс помог структурировать и углубить уже имеющиеся знания о CV а также получить новые. Познакомиться с современными подходами в CV, узнать как и почему работают различные решения. А самое главное - это возможность применить полученные знания в домашних работах и итоговом проекте.
Курс был насыщен и в меру сложен. С нетерпением жду курс следующего уровня сложности!
Читать целиком
Татьяна
Воронич
Хотелось найти курс и обширный, и узконаправленный Computer Vision. И в общем это получилось.
Цель была обновить (вспомнить) и углубить знания в этой области, узнать, что нового и важного, с точки зрения практикующих специалистов появилось на данный момент.
На курсе приятная обстановка. Сам курс насыщен практикой, настоящее глубокое погружение в мир компьютерного зрения. А команда преподавателей, состоящая из специалистов и профессионалов, каждый в своём направлении, делает этот курс особенно сильным и уникальным.
Обучение даёт мне сделать новый шаг в саморазвитии в направлении нейронные сети. Попробовать себя в новых задачах, более сложных и прикладных.
В карьере пока без изменений. Но появился шанс попробовать новые проекты, используя более продвинутые инструменты, и, конечно, много новых идей.
Читать целиком
Станислав
Кусков
Хотелось бы сказать огромное спасибо преодавателям курса за их профессионализм и поддержку!
После окончания курса по C++ на платформе Otus увидел тут же новый курс по CV. Решил попробовать, вед курсом по C++ остался доволен!
Курс помог структурировать и углубить уже имеющиеся знания о CV а также получить новые. Познакомиться с современными подходами в CV, узнать как и почему работают различные решения. А самое главное - это возможность применить полученные знания в домашних работах и итоговом проекте.
Курс был насыщен и в меру сложен. С нетерпением жду курс следующего уровня сложности!
Читать целиком

Необходимые знания

  • Основы мат. анализа, линейной алгебры, теории вероятностей и мат. статистики, метод обратного распространения.
  • Основы программирования на Python.
  • Знания, как устроены базовые архитектуры и слои нейронных сетей (сверточные/рекуррентные сети, батч-нормализация, сиамские сети и т. д.).
Корпоративное обучение для ваших сотрудников
>
Программа обучения
В процессе обучения вы получите комплексные знания и навыки.
C 29 апреля
Тема 1. Компьютерное зрение: задачи, инструменты и программа курса
Тема 2. Сверточные нейронные сети. Операции свертки, транспонированной свертки, пуллинг
Тема 3. Автокодировщики
Тема 4. Эволюция сверточных сетей: AlexNet->ResNetX
Тема 5. OpenCV. Классические подходы
Тема 6. Стандартные датасеты и модели в PyTorch на примере Fine-tuning
Тема 7. Стандартные датасеты и модели в TensorFlow на примере подхода Transfer Learning
Тема 8. OpenCV. Модуль DNN
C 1 июня
Тема 9. Подготовка и аугментация данных
Тема 10. Object detection 1. Постановка задачи, метрики, данные, R-CNN
Тема 11. Face recognition
Тема 12. Внимание в сверточных сетях. Аннотация
Тема 13. Object detection 2. Mask-RCNN, YOLO, RetinaNet
Тема 14. Landmarks: Facial landmarks: PFLD, stacked hourglass networks(?), Deep Alignment Networks (DAN),
Тема 15. Pose estimation
C 1 июля
Тема 16. Сегментация + 3D - сегментация
Тема 17. Работаем с 3D сценами. PointNet
Тема 18. Object tracking
Тема 19. GANs 1. Фреймворк, условная генерация и super-resolution
Тема 20. Action recognition и 3d для видео
Тема 21. GANs 2. Обзор архитектур
Тема 22. TensorRT и инференс на сервере
C 27 июля
Тема 23. Выбор темы и организация проектной работы
Тема 24. Консультация по проектам и домашним заданиям
Тема 25. Защита проектных работ
Скачать подробную программу
Выпускной проект
В течение всего курса вы будете работать над индивидуальным проектом.

Будет предложено несколько вариантов на выбор:

  • Удаление объектов с фото

  • Выделение описания фото из текста

  • Поиск/удаление брендов на фото/видео

  • Генерация персонального аватара в заданном стиле

  • Озвучивание видео

  • Ваш проект на выбор
  • Процесс обучения

    Обучение проходит в формате вебинаров (онлайн). Слушателям предлагаются к выполнению домашние задания, которые позволят применять на практике полученные во время вебинаров знания. По каждому домашнему заданию преподаватель дает развернутый фидбек.
    Преподаватель находится в едином коммуникационном пространстве с группой на протяжении всего курса, т. е. в процессе обучения слушатель может задавать преподавателю уточняющие вопросы по материалам лекций и домашних заданий.
    Получить консультацию
    Наш специалист свяжется с вами в ближайшее время. Если у вас возникли трудности в выборе курса или проблемы технического плана, то мы с радостью поможем вам.
    Спасибо!
    Мы получили Вашу заявку, в ближайшее время с Вами свяжется наш менеджер.

    После обучения вы

  • получите материалы по всем занятиям (видеозаписи занятий, презентации, примеры кодов);

  • научитесь решать задачи компьютерного зрения;

  • подготовите портфолио;

  • получите сертификат об окончании курса;

  • получите приглашение пройти собеседование в компаниях-партнерах (в случае успешного обучения на курсе).
  • Дата выдачи сертификата: 26 сентября 2021 года
    Ваш сертификат

    онлайн-образование

    Сертификат №0001

    Константин Константинопольский

    Успешно закончил курс «Компьютерное зрение»
    Выполнено практических заданий: 16 из 16

    Общество с ограниченной ответственностью “Отус Онлайн-Образование”

    Город:
    Москва

    Генеральный директор ООО “Отус Онлайн-Образование”
    Виталий Чибриков

    Лицензия на осуществление образовательной деятельности
    № 039825 от 28 декабря 2018 года.

    онлайн-образование

    Сертификат №0001

    Константин Константинопольский

    Успешно закончил курс «Компьютерное зрение»
    Выполнено практических заданий: 16 из 16

    Общество с ограниченной ответственностью “Отус Онлайн-Образование”

    Город:
    Москва

    Генеральный директор ООО “Отус Онлайн-Образование”
    Виталий Чибриков

    Лицензия на осуществление образовательной деятельности
    № 039825 от 28 декабря 2018 года.
    Прошедшие открытые вебинары
    Открытый вебинар — это настоящее занятие в режиме он-лайн с преподавателем курса, которое позволяет посмотреть, как проходит процесс обучения. В ходе занятия слушатели имеют возможность задать вопросы и получить знания по реальным практическим кейсам.
    Состязательные сети и повышение разрешения
    Артур Кадурин
    День открытых дверей
    8 апреля в 20:00
    Для доступа к прошедшим мероприятиям необходимо пройти входное тестирование
    Возможность пройти вступительное тестирование повторно появится только через 2 недели
    Результаты тестирования будут отправлены вам на e-mail, указанный при регистрации.
    Тест рассчитан на 30 минут, после начала тестирования отложить тестирование не получится!

    Партнеры ждут выпускников этого курса

    Стоимость обучения
    39 000 ₽
    45 000 ₽
    Продолжительность
    4 месяца
    Начало занятий
    29 апреля