Нейронные сети: как строить современные решения на основе методов глубокого обучения

Курсы

Программирование
Выбор профессии в IT
-99%
Python Developer. Basic Специализация Python Developer Python Developer. Professional Golang Developer. Professional Базы данных iOS Developer. Basic Computer Science Android Developer. Professional Team Lead Android Developer. Basic Специализация Android-разработчик Vue.js разработчик Groovy Developer JavaScript Developer. Basic Специализация Java-разработчик C++ Developer. Basic Специализация Fullstack developer Unity Game Developer. Basic PHP Developer. Professional Agile Project Manager PostgreSQL для администраторов баз данных и разработчиков MS SQL Server Developer Unreal Engine Game Developer. Professional Web-разработчик на Python Cloud Solution Architecture Flutter Mobile Developer PHP Developer. Basic Специализация PHP Developer Rust Developer Буткемп Java Unity VR/AR Developer
Специализации Курсы в разработке Подготовительные курсы Подписка
+7 499 938-92-02

Deep Learning

Курс для начинающих программистов, аналитиков и студентов технических специальностей, желающих разобраться с нуля, как строить современные решения на основе методов глубокого обучения.

Длительность обучения:

4 месяца

4 ак. часа в нед.

Что даст вам этот курс
  • Повторим с вами необходимые области математики: теорию информации, теорию вероятности, линейную алгебру и основы анализа.
  • Изучим основные библиотеки и фреймворки для машинного обучения работы с нейронными сетями: от NumPy до TensorFlow.
  • Решим классические задачи глубокого обучения по всем основным направлениям: "Компьютерное зрение", "Обработка естественных языков", "Обучение с подкреплением", "Генеративные сети".

После прохождения курса вы:

    • Сможете пройти собеседование на должность Junior Deep Learning Engineer;
    • Научитесь решать задачи машинного обучения с помощью нейронных сетей, такие как: генерация рукописных цифр, самообучающийся бот для игры в крестики-нолики, классификация изображений и т. д.;
    • Будете знать теорию, необходимую для прохождения продвинутых курсов.

Карта курсов направления Data Science в OTUS



Научитесь работать с нейронными сетями с использованием фреймворков PyTorch, Tensorflow, Keras

Изучите теорию и практику по таким важным направлениям Deep Learning, как Computer Vision, NLP, обучение с подкреплением

Самый современный материал про глубокое обучение

Программа подготовлена признанным экспертом по глубокому обучению

 

Нейронные сети — как дети: их можно научить чему угодно. Но нужно помнить и о трудностях, сопровождающих каждого родителя: неправильные методы обучения, недостаток хороших примеров или несоответствие архитектуры ребёнка поставленным задачам могут привести к непредсказуемым результатам.
Артур Кадурин
Преподаватель курса

Преподаватели

Антон Витвицкий
Boost Arria NLG, Director of Computer Vision
Иван Мордовец
Старший специалист по анализу данных в Билайн
Никита Мартынов
NLP Engineer в MTS AI
Анна Закутняя
Программист-исследователь в Epoch8/AGIMA.AI
Сергей Цыкин
ML Team Leader, Assaia
Артур Кадурин
Директор ключевых исследовательских программ. Институт Искусственного Интеллекта
Эмиль Богомолов
Фаррух Кушназаров
Ping'an- iTutorGroup, Sr. Data Scientist
Дмитрий Хизбуллин
Андрей Канашов
Senior Data Scientist в OZON
Эксперт по компьютерному зрению и глубокому обучению, дипломированный инженер-программист и кандидат физ-мат наук.

С 2012 по 2017 занимался распознаванием лиц в компании WalletOne, чьи решения поставлялись для бизнеса в странах Южной Африки и Европы. Участвовал в стартапе Mirror-AI, где руководил командой компьютерного зрения. В 2017 стартап прошел Y-combinator и получили инвестиции для создания приложения в котором пользователь может реконструировать свой аватар по селфи. В 2019 участвовал в британском стартапе Kazendi Ltd., в проекте HoloPortation. Цель проекта - реконструкция 3D-аватаров для очков дополненной реальности HoloLens. C 2020 руководит командой компьютерного зрения в американском стартапе Boost Inc., который занимается видеоаналитикой в баскетболе для NCAA.

Закончил физический факультет МГУ им. Ломоносова (степень магистра по ядерной физике)

В data science решал и решаю задачи в самых разных сферах: от классического машинного обучения до computer vision и nlp.

Люблю участвовать в разнообразных хакатонах, соревнованиях на Kaggle.

Закончил НИУ ВШЭ по направлению Прикладная Математика;
Работал в ВТБ, Тинькофф, Лаборатории "Финансовые технологии" МФТИ, сейчас работаю NLP Engineer-ом в MTS AI; занимался приложениями NLP для решения финансовых задач,
Сейчас занимаюсь разработкой и оптимизацией больших языковых моделей и гибридными диалоговыми движками;
Спикер на gtc2022 и ainl2022;

Окончила магистратуру по количественным финансам в НИУ-ВШЭ. С университета интересуется задачами машинного и глубоко обучения. Успела поработать над различными проектами: разрабатывала пайплайн для детекции и распознавания картин; интегрировала модуль распознавания в прототип автоматического сортировщика мусора с помощью ROS; собирала пайплайн распознавания видео и многие другие.

Около 7 лет работает в сферах Data Science/Machine Learning. В рамках DS имел дело с data visualization и time-series analysis (anomaly detection, pattern recognition, change point detection).

Далее перешел в Assaia. Здесь основная часть времени приходится на работу с Computer Vision: segmentation, object counting, tracking (определение скорости движения объектов по видео, построение траекторий и пр.). Так как почти все задачи связаны с видео, кроме самого CV всегда занимается интересным постпроцессингом.

Окончил физический факультет СПбГУ, где обучался на кафедре математической физики по направлению «Теория вероятности». Пишет кандидатскую.

Последние 1,5 года — ML Team Leader команды из ~10 человек. Кроме ML занимается MIP-задачами.

Соавтор курсов "Компьютерное зрение" и "Deep Learning"

В Mail.Ru Group был первым сотрудником в группе по анализу данных департамента рекламных технологий. После того, как группа выросла в отдел, возглавил группу сегментирования аудитории. Руководил и участвовал в проектах, связанных с анализом пользовательского поведения в рекламе, соцсетях, играх и т. д.

С 2016 года применяет методы глубокого обучения для научных исследований в области медицинской химии совместно с командой Insilico Medicine, где после успешного проекта занял должность директора по AI. В конце 2017 г. возглавил дочернюю компанию Insilico Taiwan в качестве исполнительного директора.

В 2008 году получил специальность математика и системного программиста в Кубанском Государственном Университете на Факультете Компьютерных Наук и Прикладной Математики, с 2013 года занимается машинным обучением.

Соавтор книги Глубокое обучение
Соавтор многочисленных научных публикаций: Google Scholar
Директор ключевых исследовательских программ. Институт Искусственного Интеллекта

Инженер-исследователь научной группы ADASE в Сколтехе, выпусник кафедры системного анализа ВМК МГУ и Техносферы MailRu. Энтузиаст в сфере машинного обучения и компьютерного зрения. Контрибьютор опенсорс фреймворков. Многократный победитель хакатонов по анализу данных.
Является автором статей на международных конференциях: WACV по теме сегментации и детекции частей тела и позы человека, и на CVPR по теме сегментации и восстановления объектов на 3D сканах.
Ранее работал в сфере анализа данных в ритейле. Занимался обработкой больших данных и детекцией аномалий с помощью модели на основе градиентного бустинга.

- к.т.н. по направлению Мат.моделирование и комплекс программ;
- 10+ лет опыта работы в сфере ИТ;
- 5+ лет опыта в проектах машинного обучения, глубокого обучения и искусственного интеллекта в различных областях;
- более 2-х лет педагогического опыта;
- 10+ научных публикаций.

Разработчик и исследователь с 10+ лет опыта работы в России, Германии и Эстонии, специализирующийся на глубоком обучении, компьютерном зрении и беспилотных автомобилях. В данный момент Дмитрий является тим-лидом в исследовательском центре Huawei и работает над зрением беспилотных автомобилей и распределенной тренировкой нейронных сетей.

Работает в лидирующем российском маркетплейсе OZON. Занимался задачами с использованием как классического Machine Learning, так и Deep Learning алгоритмов с использованием нейронных сетей в задачах NLP и CV, а также проведением различных аналитических исследований:

- Задачи NLP (Topic Modeling, NER) и CV (face detection, instance segmentation, semantic segmentation, age/gender classification) для анализа социальных сетей
- Кластерный анализ целевых аудитории (clustering)
- Прогнозирование бизнес-метрик (classical ML)
- Аудиторное профилирование и персонализация рекламы

Самостоятельно занимался изучением Machine Learning. Знает, что нужно для освоения новой профессии и какие при этом возникают вопросы.

Антон
Витвицкий
Иван
Мордовец
Никита
Мартынов
Анна
Закутняя
Сергей
Цыкин
Артур
Кадурин
Эмиль
Богомолов
Фаррух
Кушназаров
Дмитрий
Хизбуллин
Андрей
Канашов

Преподаватели

Антон Витвицкий
Boost Arria NLG, Director of Computer Vision
Эксперт по компьютерному зрению и глубокому обучению, дипломированный инженер-программист и кандидат физ-мат наук.

С 2012 по 2017 занимался распознаванием лиц в компании WalletOne, чьи решения поставлялись для бизнеса в странах Южной Африки и Европы. Участвовал в стартапе Mirror-AI, где руководил командой компьютерного зрения. В 2017 стартап прошел Y-combinator и получили инвестиции для создания приложения в котором пользователь может реконструировать свой аватар по селфи. В 2019 участвовал в британском стартапе Kazendi Ltd., в проекте HoloPortation. Цель проекта - реконструкция 3D-аватаров для очков дополненной реальности HoloLens. C 2020 руководит командой компьютерного зрения в американском стартапе Boost Inc., который занимается видеоаналитикой в баскетболе для NCAA.

Иван Мордовец
Старший специалист по анализу данных в Билайн
Закончил физический факультет МГУ им. Ломоносова (степень магистра по ядерной физике)

В data science решал и решаю задачи в самых разных сферах: от классического машинного обучения до computer vision и nlp.

Люблю участвовать в разнообразных хакатонах, соревнованиях на Kaggle.

Никита Мартынов
NLP Engineer в MTS AI
Закончил НИУ ВШЭ по направлению Прикладная Математика;
Работал в ВТБ, Тинькофф, Лаборатории "Финансовые технологии" МФТИ, сейчас работаю NLP Engineer-ом в MTS AI; занимался приложениями NLP для решения финансовых задач,
Сейчас занимаюсь разработкой и оптимизацией больших языковых моделей и гибридными диалоговыми движками;
Спикер на gtc2022 и ainl2022;

Анна Закутняя
Программист-исследователь в Epoch8/AGIMA.AI
Окончила магистратуру по количественным финансам в НИУ-ВШЭ. С университета интересуется задачами машинного и глубоко обучения. Успела поработать над различными проектами: разрабатывала пайплайн для детекции и распознавания картин; интегрировала модуль распознавания в прототип автоматического сортировщика мусора с помощью ROS; собирала пайплайн распознавания видео и многие другие.

Сергей Цыкин
ML Team Leader, Assaia
Около 7 лет работает в сферах Data Science/Machine Learning. В рамках DS имел дело с data visualization и time-series analysis (anomaly detection, pattern recognition, change point detection).

Далее перешел в Assaia. Здесь основная часть времени приходится на работу с Computer Vision: segmentation, object counting, tracking (определение скорости движения объектов по видео, построение траекторий и пр.). Так как почти все задачи связаны с видео, кроме самого CV всегда занимается интересным постпроцессингом.

Окончил физический факультет СПбГУ, где обучался на кафедре математической физики по направлению «Теория вероятности». Пишет кандидатскую.

Последние 1,5 года — ML Team Leader команды из ~10 человек. Кроме ML занимается MIP-задачами.

Артур Кадурин
Директор ключевых исследовательских программ. Институт Искусственного Интеллекта
Соавтор курсов "Компьютерное зрение" и "Deep Learning"

В Mail.Ru Group был первым сотрудником в группе по анализу данных департамента рекламных технологий. После того, как группа выросла в отдел, возглавил группу сегментирования аудитории. Руководил и участвовал в проектах, связанных с анализом пользовательского поведения в рекламе, соцсетях, играх и т. д.

С 2016 года применяет методы глубокого обучения для научных исследований в области медицинской химии совместно с командой Insilico Medicine, где после успешного проекта занял должность директора по AI. В конце 2017 г. возглавил дочернюю компанию Insilico Taiwan в качестве исполнительного директора.

В 2008 году получил специальность математика и системного программиста в Кубанском Государственном Университете на Факультете Компьютерных Наук и Прикладной Математики, с 2013 года занимается машинным обучением.

Соавтор книги Глубокое обучение
Соавтор многочисленных научных публикаций: Google Scholar
Директор ключевых исследовательских программ. Институт Искусственного Интеллекта

Эмиль Богомолов
Инженер-исследователь научной группы ADASE в Сколтехе, выпусник кафедры системного анализа ВМК МГУ и Техносферы MailRu. Энтузиаст в сфере машинного обучения и компьютерного зрения. Контрибьютор опенсорс фреймворков. Многократный победитель хакатонов по анализу данных.
Является автором статей на международных конференциях: WACV по теме сегментации и детекции частей тела и позы человека, и на CVPR по теме сегментации и восстановления объектов на 3D сканах.
Ранее работал в сфере анализа данных в ритейле. Занимался обработкой больших данных и детекцией аномалий с помощью модели на основе градиентного бустинга.

Фаррух Кушназаров
Ping'an- iTutorGroup, Sr. Data Scientist
- к.т.н. по направлению Мат.моделирование и комплекс программ;
- 10+ лет опыта работы в сфере ИТ;
- 5+ лет опыта в проектах машинного обучения, глубокого обучения и искусственного интеллекта в различных областях;
- более 2-х лет педагогического опыта;
- 10+ научных публикаций.

Дмитрий Хизбуллин
Разработчик и исследователь с 10+ лет опыта работы в России, Германии и Эстонии, специализирующийся на глубоком обучении, компьютерном зрении и беспилотных автомобилях. В данный момент Дмитрий является тим-лидом в исследовательском центре Huawei и работает над зрением беспилотных автомобилей и распределенной тренировкой нейронных сетей.

Андрей Канашов
Senior Data Scientist в OZON
Работает в лидирующем российском маркетплейсе OZON. Занимался задачами с использованием как классического Machine Learning, так и Deep Learning алгоритмов с использованием нейронных сетей в задачах NLP и CV, а также проведением различных аналитических исследований:

- Задачи NLP (Topic Modeling, NER) и CV (face detection, instance segmentation, semantic segmentation, age/gender classification) для анализа социальных сетей
- Кластерный анализ целевых аудитории (clustering)
- Прогнозирование бизнес-метрик (classical ML)
- Аудиторное профилирование и персонализация рекламы

Самостоятельно занимался изучением Machine Learning. Знает, что нужно для освоения новой профессии и какие при этом возникают вопросы.

Необходимые знания

  • Математика на уровне средней школы.
  • Владение языком программирования Python на базовом уровне.
Корпоративное обучение для ваших сотрудников
>
Программа обучения
В процессе обучения вы получите комплексные знания и навыки.
Тема 1. Обзорное занятие
Тема 2. От нейрона к нейронной сети
Тема 3. Градиентный спуск и backpropagation
Тема 4. Распределения и Теория информации
Тема 5. Python и Kaggle
Тема 6. PyTorch
Тема 7. Numpy и Scipy
Тема 8. Логрегрессия на pytorch
Тема 9. Адаптивные методы градиентного спуска
Тема 10. Переобучение и регуляризация
Тема 11. Автокодирование и вариационный автокодировщик
Тема 12. Взрыв и затухание градиентов
Тема 13. Введение в NLP
Тема 14. Metric Learning
Тема 15. Обучение с подкреплением. Q-learning для TicTacToe
Тема 16. AutoML
C 7 декабря
Тема 17. Сверточные сети. Классифицируем MNIST
Тема 18. Сверточные сети, fine-tunning
Тема 19. Методы оптимизации сетей: prunning, mixint, quantization
Тема 20. Выбор темы и организация проектной работы
Тема 21. Рекуррентные сети
Тема 22. Transformers. Теория
Тема 23. Transformers. Практика
Тема 24. Generative Adversarial Networks (GANs)
Тема 25. Графовые модели
C 16 января
Тема 26. Консультация по проектам и домашним заданиям
Тема 27. Защита проектных работ
Скачать подробную программу
Выпускной проект
В рамках курса предусмотрена защита проекта. Он представляет собой генеративную модель для порождения текста заданного стиля или изображений заданной тематики.


Работа над проектом проходит поэтапно:
1. Выбор тематики.
2. Сбор и подготовка соответствующих данных.
3. Построение и обучение генеративной модели.


Проект выполняется программистом в течение двух недель после прохождения курса. Готовое решение должно включать в себя код модели и ее обучения на Python, описание архитектуры модели, отчет об обучении модели и примеры генерации.


Примеры тем проекта:

  • обучение с подкреплением. Нейронная сеть для игры в крестики-нолики;

  • компьютерное зрение. Генерация новых изображений;

  • обработка естественных языков. Посимвольная генерация текста.

Процесс обучения

Образовательный процесс на курсе "Deep Learning. Basic" проходит в формате вебинаров (онлайн). Слушателям предлагаются к выполнению домашние задания, которые позволят применить на практике полученные во время вебинаров знания. По каждому домашнему заданию преподаватель даёт развернутый фидбек. При написании кода используется Python. Преподаватель находится в едином коммуникационном пространстве с группой, т. е. слушатель может задавать преподавателю уточняющие вопросы по материалам лекций и домашних заданий. Интенсивность: 2 онлайн-вебинара в неделю по 2 часа каждый и от 1 до 4 часов на домашнюю работу.
Получить консультацию
Наш специалист свяжется с вами в ближайшее время. Если у вас возникли трудности в выборе курса или проблемы технического плана, то мы с радостью поможем вам.
Спасибо!
Мы получили Вашу заявку, в ближайшее время с Вами свяжется наш менеджер.

После обучения вы


  • получите материалы по всем пройденным занятиям (презентации, видеозаписи вебинаров, примеры кодов на Python);

  • станете специалистом в такой сфере, как глубокое машинное обучение;

  • получите сертификат об окончании курса;

  • получите приглашение пройти собеседование в компаниях-партнёрах (в случае успешного освоения программы курса).

Ваш сертификат

онлайн-образование

Сертификат №0001

Константин Константинопольский

Успешно закончил курс «Deep Learning»
Выполнено практических заданий: 16 из 16

Общество с ограниченной ответственностью “Отус Онлайн-Образование”

Город:
Москва

Директор департамента образования
ООО “Отус Онлайн-Образование”
Анна Фирсова

Лицензия на осуществление образовательной деятельности
№ 039825 от 28 декабря 2018 года.

онлайн-образование

Сертификат №0001

Константин Константинопольский

Успешно закончил курс «Deep Learning»
Выполнено практических заданий: 16 из 16

Общество с ограниченной ответственностью “Отус Онлайн-Образование”

Город:
Москва

Директор департамента образования
ООО “Отус Онлайн-Образование”
Анна Фирсова

Лицензия на осуществление образовательной деятельности
№ 039825 от 28 декабря 2018 года.
Прошедшие открытые вебинары
Открытый вебинар — это настоящее занятие в режиме он-лайн с преподавателем курса, которое позволяет посмотреть, как проходит процесс обучения. В ходе занятия слушатели имеют возможность задать вопросы и получить знания по реальным практическим кейсам.
Пишем первую нейронную сеть
Антон Витвицкий
День открытых дверей
4 августа 2021 года в 20:00
Оставьте заявку, чтобы получить доступ к записям прошедших мероприятий. Записи всех мероприятий появятся в этом блоке

Партнеры ждут выпускников этого курса