Deep Learning. Basic | OTUS
⚡ Открываем подписку на курсы!
Проходите параллельно 3 онлайн-курса в месяц по цене одного.
Подробнее

Курсы

Программирование
iOS Разработчик. Продвинутый курс Программист 1С Реверс-инжиниринг. Продвинутый курс
-16%
Java Developer. Professional
-17%
JavaScript Developer. Professional
-18%
Flutter Mobile Developer
-15%
MS SQL Server Developer
-14%
Unity Game Developer. Basic
-19%
Супер - практикум по использованию и настройке GIT
-18%
Супер-интенсив "СУБД в высоконагруженных системах"
-18%
Web-разработчик на Python
-11%
Backend-разработчик на PHP
-8%
PostgreSQL
-10%
Базы данных
-19%
Android-разработчик. Базовый курс Разработчик Python. Продвинутый курс Разработчик на Spring Framework AWS для разработчиков Cloud Solution Architecture CI/CD Vue.js разработчик Разработчик Node.js Scala-разработчик Супер - интенсив по Kubernetes Symfony Framework Advanced Fullstack JavaScript developer
Специализации Курсы в разработке Подготовительные курсы
+7 499 938-92-02
Специальная цена

Deep Learning. Basic

Курс для начинающих программистов, аналитиков и студентов технических специальностей, желающих разобраться с нуля, как строить современные решения на основе методов глубокого обучения.

Длительность обучения:

Формат:

Начало занятий:

Дни занятий:

4 месяца

4 ак. часа в нед.

Online

30 сентября

Сб 10:00, Ср 20:00

Что даст вам этот курс


  • Повторим с вами необходимые области математики: теорию информации, теорию вероятности, линейную алгебру и основы анализа.

  • Изучим основные библиотеки и фреймворки для машинного обучения работы с нейронными сетями: от NumPy до TensorFlow.

  • Решим классические задачи глубокого обучения по всем основным направлениям: "Компьютерное зрение", "Обработка естественных языков", "Обучение с подкреплением", "Генеративные сети".


      После прохождения курса вы:

    • сможете пройти собеседование на должность Junior Deep Learning Engineer;
    • научитесь решать задачи машинного обучения с помощью нейронных сетей, такие как: генерация рукописных цифр, самообучающийся бот для игры в крестики-нолики, классификация изображений и т. д.;
    • будете знать теорию, необходимую для прохождения продвинутых курсов.





    Научитесь работать с нейронными сетями с использованием фреймворков PyTorch, Tensorflow, Keras


    Изучите теорию и практику по таким важным направлениям Deep Learning, как Computer Vision, NLP, обучение с подкреплением

    Самый современный материал про глубокое обучение

    Программа подготовлена признанным экспертом по глубокому обучению


Нейронные сети — как дети: их можно научить чему угодно. Но нужно помнить и о трудностях, сопровождающих каждого родителя: неправильные методы обучения, недостаток хороших примеров или несоответствие архитектуры ребёнка поставленным задачам могут привести к непредсказуемым результатам.
Артур Кадурин
Преподаватель курса
Нейронные сети — как дети: их можно научить чему угодно. Но нужно помнить и о трудностях, сопровождающих каждого родителя: неправильные методы обучения, недостаток хороших примеров или несоответствие архитектуры ребёнка поставленным задачам могут привести к непредсказуемым результатам.
Артур Кадурин
Преподаватель курса
Метод максимального правдоподобия, 23 сентября в 20:00
Слушатели узнают:
- что такое правдоподобие
- как связано правдоподобие и перекрестная энтропия
- как связано правдоподобие и среднеквадратичное отклонение
Ведет
Артур
Кадурин
Предыдущий открытый вебинар

Преподаватели

Артур Кадурин
Chief AI Officer Insilico Medicine
Михаил Степанов
Data Scientist Insilico Medicine
Евгения Ческидова
Deep Learning Engineer в Wolf3d, Таллин
Антон Витвицкий
BOOST INC., Head of Computer Vision
В Mail.Ru Group был первым сотрудником в группе по анализу данных департамента рекламных технологий. После того, как группа выросла в отдел, возглавил группу сегментирования аудитории. Руководил и участвовал в проектах, связанных с анализом пользовательского поведения в рекламе, соцсетях, играх и т. д.

С 2016 года применяет методы глубокого обучения для научных исследований в области медицинской химии совместно с командой Insilico Medicine, где после успешного проекта занял должность директора по AI. В конце 2017 г. возглавил дочернюю компанию Insilico Taiwan в качестве исполнительного директора.

В 2008 году получил специальность математика и системного программиста в Кубанском Государственном Университете на Факультете Компьютерных Наук и Прикладной Математики, с 2013 года занимается машинным обучением.

Соавтор книги Глубокое обучение
Соавтор многочисленных научных публикаций: Google Scholar

Руководитель программы
Сейчас занимается глубоким обучением для разработки новых лекарственных препаратов. Занимался проектами по агрегации отзывов, по анализу и оптимизации производства крупных промышленных компаний, в том числе проектами по face detection, face recognition, pose estimation. Оптимизировал модели для запуска на портативных или маломощных устройствах.

Ранее учил талантливых школьников программированию, машинному обучению и программированию учебных моделей спутников.

Преподаватель
Специалист по глубокому обучению и аналитик данных с опытом. Работала в лаборатории нейронных сетей и глубокого обучения в МФТИ и в «Тинькофф».

Занималась разработкой чат-ботов и глубоким обучением, связанным с методами обработки естественного языка. Преподавала курс по нейронным сетям и глубокому обучению в ВШЭ на факультете математики, а также курс по обработке естественного языка на образовательной платформе «Тинькофф». Кроме того, вела курсы в различных летних школах.

Около года занимается компьютерным зрением в стартапе Wolf3d. Сейчас работает над технологией восстановления 3Д-меша лица по одной фотографии. Главная сфера интересов в глубоком обучении в настоящий момент — работа с 3D-данными.

Образование: бакалавриат МФТИ по направлению «Прикладная математика и физика».

Преподаватель
Эксперт по компьютерному зрению и глубокому обучению, дипломированный инженер-программист и кандидат физ-мат наук.

С 2012 по 2017 занимался распознаванием лиц в компании WalletOne, чьи решения поставлялись для бизнеса в странах Южной Африки и Европы. Участвовал в стартапе Mirror-AI, где руководил командой компьютерного зрения. В 2017 стартап прошел Y-combinator и получили инвестиции для создания приложения в котором пользователь может реконструировать свой аватар по селфи. В 2019 участвовал в британском стартапе Kazendi Ltd., в проекте HoloPortation. Цель проекта - реконструкция 3D-аватаров для очков дополненной реальности HoloLens. C 2020 руководит командой компьютерного зрения в американском стартапе Boost Inc., который занимается видеоаналитикой в баскетболе для NCAA.

Преподаватель
Артур
Кадурин
Михаил
Степанов
Евгения
Ческидова
Антон
Витвицкий

Преподаватели

Артур Кадурин
Chief AI Officer Insilico Medicine
В Mail.Ru Group был первым сотрудником в группе по анализу данных департамента рекламных технологий. После того, как группа выросла в отдел, возглавил группу сегментирования аудитории. Руководил и участвовал в проектах, связанных с анализом пользовательского поведения в рекламе, соцсетях, играх и т. д.

С 2016 года применяет методы глубокого обучения для научных исследований в области медицинской химии совместно с командой Insilico Medicine, где после успешного проекта занял должность директора по AI. В конце 2017 г. возглавил дочернюю компанию Insilico Taiwan в качестве исполнительного директора.

В 2008 году получил специальность математика и системного программиста в Кубанском Государственном Университете на Факультете Компьютерных Наук и Прикладной Математики, с 2013 года занимается машинным обучением.

Соавтор книги Глубокое обучение
Соавтор многочисленных научных публикаций: Google Scholar

Руководитель программы
Михаил Степанов
Data Scientist Insilico Medicine
Сейчас занимается глубоким обучением для разработки новых лекарственных препаратов. Занимался проектами по агрегации отзывов, по анализу и оптимизации производства крупных промышленных компаний, в том числе проектами по face detection, face recognition, pose estimation. Оптимизировал модели для запуска на портативных или маломощных устройствах.

Ранее учил талантливых школьников программированию, машинному обучению и программированию учебных моделей спутников.

Преподаватель
Евгения Ческидова
Deep Learning Engineer в Wolf3d, Таллин
Специалист по глубокому обучению и аналитик данных с опытом. Работала в лаборатории нейронных сетей и глубокого обучения в МФТИ и в «Тинькофф».

Занималась разработкой чат-ботов и глубоким обучением, связанным с методами обработки естественного языка. Преподавала курс по нейронным сетям и глубокому обучению в ВШЭ на факультете математики, а также курс по обработке естественного языка на образовательной платформе «Тинькофф». Кроме того, вела курсы в различных летних школах.

Около года занимается компьютерным зрением в стартапе Wolf3d. Сейчас работает над технологией восстановления 3Д-меша лица по одной фотографии. Главная сфера интересов в глубоком обучении в настоящий момент — работа с 3D-данными.

Образование: бакалавриат МФТИ по направлению «Прикладная математика и физика».

Преподаватель
Антон Витвицкий
BOOST INC., Head of Computer Vision
Эксперт по компьютерному зрению и глубокому обучению, дипломированный инженер-программист и кандидат физ-мат наук.

С 2012 по 2017 занимался распознаванием лиц в компании WalletOne, чьи решения поставлялись для бизнеса в странах Южной Африки и Европы. Участвовал в стартапе Mirror-AI, где руководил командой компьютерного зрения. В 2017 стартап прошел Y-combinator и получили инвестиции для создания приложения в котором пользователь может реконструировать свой аватар по селфи. В 2019 участвовал в британском стартапе Kazendi Ltd., в проекте HoloPortation. Цель проекта - реконструкция 3D-аватаров для очков дополненной реальности HoloLens. C 2020 руководит командой компьютерного зрения в американском стартапе Boost Inc., который занимается видеоаналитикой в баскетболе для NCAA.

Преподаватель
Необходимые знания
  • Математика на уровне средней школы.
  • Владение языком программирования Python на базовом уровне.
Программа обучения
В процессе обучения вы получите комплексные знания и навыки.
C 30 сентября
Тема 1. Обзорное занятие
Тема 2. Градиентный спуск. Математика
Тема 3. Градиентный спуск. Вывод
Тема 4. Numpy
Тема 5. Распределения и информация
Тема 6. Логрегрессия на pytorch
Тема 7. Линейная регрессия на TensorFlow
C 28 октября
Тема 8. PyTorch
Тема 9. TensorFlow
Тема 10. Переобучение и регуляризация
Тема 11. Взрыв и затухание градиентов
Тема 12. Автокодирование
Тема 13. Вариационный автокодировщик
Тема 14. Решение домашних заданий
C 2 декабря
Тема 15. Сверточные сети. Классифицируем MNIST
Тема 16. Сверточные сети. fine-tunning
Тема 17. Обучение с подкреплением. Q-learning для TicTacToe
Тема 18. GANs
Тема 19. Рекуррентные сети
Тема 20. Автокодировщики 2
Тема 21. Что дальше? Обзор направлений DL
C 26 декабря
Тема 22. Выбор темы и организация проектной работы
Тема 23. Консультация по проектам и домашним заданиям
Тема 24. Защита проектных работ
Скачать подробную программу
Выпускной проект
В рамках курса предусмотрена защита проекта. Он представляет собой генеративную модель для порождения текста заданного стиля или изображений заданной тематики.


Работа над проектом проходит поэтапно:
1. Выбор тематики.
2. Сбор и подготовка соответствующих данных.
3. Построение и обучение генеративной модели.


Проект выполняется программистом в течение двух недель после прохождения курса. Готовое решение должно включать в себя код модели и ее обучения на Python, описание архитектуры модели, отчет об обучении модели и примеры генерации.


Примеры тем проекта:

  • обучение с подкреплением. Нейронная сеть для игры в крестики-нолики;

  • компьютерное зрение. Генерация новых изображений;

  • обработка естественных языков. Посимвольная генерация текста.

Процесс обучения
Образовательный процесс на курсе "Deep Learning. Basic" проходит в формате вебинаров (онлайн). Слушателям предлагаются к выполнению домашние задания, которые позволят применить на практике полученные во время вебинаров знания. По каждому домашнему заданию преподаватель даёт развернутый фидбек. При написании кода используется Python.
Преподаватель находится в едином коммуникационном пространстве с группой, т. е. слушатель может задавать преподавателю уточняющие вопросы по материалам лекций и домашних заданий.

Интенсивность: 2 онлайн-вебинара в неделю по 2 часа каждый и от 1 до 4 часов на домашнюю работу.
Получить консультацию
Наш специалист свяжется с вами в ближайшее время. Если у вас возникли трудности в выборе курса или проблемы технического плана, то мы с радостью поможем вам.
Спасибо!
Мы получили Вашу заявку, в ближайшее время с Вами свяжется наш менеджер.
После обучения вы

  • получите материалы по всем пройденным занятиям (презентации, видеозаписи вебинаров, примеры кодов на Python);

  • станете специалистом в такой сфере, как глубокое машинное обучение;

  • получите сертификат об окончании курса;

  • получите приглашение пройти собеседование в компаниях-партнёрах (в случае успешного освоения программы курса).

Дата выдачи сертификата: 27 февраля 2021 года
Ваш сертификат

онлайн-образование

Сертификат №0001

Константин Константинопольский

Успешно закончил курс «Deep Learning. Basic»
Выполнено практических заданий: 16 из 16

Общество с ограниченной ответственностью “Отус Онлайн-Образование”

Город:
Москва

Генеральный директор ООО “Отус Онлайн-Образование”
Виталий Чибриков

Лицензия на осуществление образовательной деятельности
№ 039825 от 28 декабря 2018 года.

онлайн-образование

Сертификат №0001

Константин Константинопольский

Успешно закончил курс «Deep Learning. Basic»
Выполнено практических заданий: 16 из 16

Общество с ограниченной ответственностью “Отус Онлайн-Образование”

Город:
Москва

Генеральный директор ООО “Отус Онлайн-Образование”
Виталий Чибриков

Лицензия на осуществление образовательной деятельности
№ 039825 от 28 декабря 2018 года.
Прошедшие открытые вебинары по курсу
Открытый вебинар — это настоящее занятие в режиме он-лайн с преподавателем курса, которое позволяет посмотреть, как проходит процесс обучения. В ходе занятия слушатели имеют возможность задать вопросы и получить знания по реальным практическим кейсам.
Как написать и протестировать нейронную сеть
Михаил Степанов
День открытых дверей
8 сентября в 20:00
Для доступа к прошедшим мероприятиям необходимо пройти входное тестирование
Возможность пройти вступительное тестирование повторно появится только через 2 недели
Результаты тестирования будут отправлены вам на e-mail, указанный при регистрации.
Тест рассчитан на 30 минут, после начала тестирования отложить тестирование не получится!
Пройти вступительное тестирование
Стоимость обучения
45 000 ₽
50 000 ₽
Продолжительность
4 месяца
Начало занятий
30 сентября